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• Processing power

– doubling every 18 months

– 60% improvement each year

– factor of 100 every decade

– 1980:  1 MHz Apple II+  =  $2,000 

(~$5,000 today)

• 1980 also 1 MIPS VAX-11/780  =  

$120,000 (~$300,000 today)

– 2006:  3.0GHz Pentium D  =  $800

– 2013:  2.7GHz Quad Core  =  $369

– 2017:  2.66GHz Quad Core = $45

Even coarse architectural trends

impact tremendously the design of systems
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Power Consumption

http://www.intel.com/pressroom/kits/core2duo/pdf/epi-trends-final2.pdf
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Primary Memory / Disk Capacity



Primary Memory Bandwidth
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• Optical bandwidth today

– Doubling every 9 months

– 150% improvement each year

– Factor of 10,000 every decade

– 10x as fast as disk capacity!

– 100x as fast as processor performance!!

• What are some of the implications of these trends?

– Just one example:  We have always designed systems so 

that they “spend” processing power in order to save “scarce” 

storage and bandwidth!



A Recent Trend: Solid State Disks
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http://www.embeddedstar.com/articles/2005/2/article20050207-4.html
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Storage Latency:  
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A Long-standing Trend: Speed of Light
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Primary Memory Cost

• Primary memory cost

– 1972:  1MB = $1,000,000

– 1982:  512KW (~ 1.5Mb) = $50,000

– 2017:  64GB = $379(!!!)
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Disk Cost

• Disk cost:
– Only a few years ago, we purchased disks by the megabyte 

(and it hurt!)

– Today, 1 GB (a billion bytes) costs $1 $0.50 $0.07 from 
Amazon (except you have to buy in increments of 40 80 250
GB)

• => 1 TB costs $1K $500 $20, 1 PB costs $1M $500K $20K
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Where Have Resources Gone?
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• Facetiously:  “What Gordon giveth, Bill taketh away”

• Realistically:  our expectations for what the system will do 

increase relentlessly

– e.g., GUI

• “Software is like a gas – it expands to fill the available space” 

– Nathan Myhrvold (1960-)

Microsoft Stock Price
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Lower-level architecture affects the OS 

even more dramatically

• The operating system supports sharing and 

protection

– multiple applications can run concurrently, sharing resources

– a buggy or malicious application can’t nail other applications 

or the system

• There are many approaches to achieving this

• The architecture determines which approaches are 

viable (reasonably efficient, or even possible)

– includes instruction set  (synchronization, I/O, …)

– also hardware components like MMU or DMA controllers



Architectural support can vastly simplify 

(or complicate!) OS tasks

• e.g.: early PC operating systems (DOS, MacOS) 

lacked support for virtual memory, in part because at 

that time PCs lacked necessary hardware support

– Apollo workstation used two CPUs as a bandaid for non-

restartable instructions!

• Until very recently, Intel-based PCs still lacked 

support for 64-bit addressing (which has been 

available for a decade on other platforms:  MIPS, 

Alpha, IBM, etc…)
• Changed driven by AMD’s 64-bit architecture

© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski 14



© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski 15

Architectural features affecting OS’s

• These features were built primarily to support OS’s:

– timer (clock) operation

– synchronization instructions (e.g., atomic test-and-set)

– memory protection

– I/O control operations

– interrupts and exceptions

– protected modes of execution (kernel vs. user)

– privileged instructions

– system calls (and software interrupts)

– virtualization architectures
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Privileged instructions

• only the OS should be able to:

– directly access I/O devices (disks, network cards)

• why?

– manipulate memory state management

• page table pointers, TLB loads, etc.

• why?

– manipulate special ‘mode bits’

• interrupt priority level

• why?

• but users can put any bit strings in memory they want

– so they can execute the same instructions that the OS does

• So how can this work?

– some instructions must be restricted to the OS

– known as privileged instructions
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OS protection

• So how does the processor know whether to allow execution of 

a privileged instruction?

– the architecture must support at least two modes of operation: 

kernel mode and user mode

• VAX, x86 support 4 protection modes

– mode is set by status bit in a protected processor register

• user programs execute in user mode

• OS executes in kernel (privileged) mode   (OS == kernel)

• Privileged instructions can be executed only in kernel 

(privileged) mode

– what happens if code running in user mode attempts to execute a 

privileged instruction?
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Crossing protection boundaries

• Q: So how do user programs do something 

privileged?

– e.g., how can you write to a disk if you can’t execute an I/O 

instructions?

• A: They can’t (directly).

• User programs must call an OS procedure – that is, 

get the OS to do it for them

– OS defines a set of system calls

– User-mode program executes system call instruction

• Syscall instruction

– Like a protected procedure call



Dynamic View
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syscall/sysret instructions

• The syscall instruction atomically:

– Saves the current (user) PC

– Sets the execution mode to privileged

– Sets the PC to a handler address (that was established by the OS 

during boot)

• The sysret instruction atomically:

– Restores the previously saved user PC

– Sets the execution mode to unprivileged
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Protected procedure call

• Similar to local procedure call…

– Caller puts arguments in a place callee expects (registers or stack)

– Caller causes jump to OS by executing syscall instruction

• The OS determines what address to start executing at, not the 

caller

• One of the passed args is a syscall number, indicating which OS 

function to invoke

– Callee (OS) saves caller’s state (registers, other control state) so it 

can use the CPU

– OS function code runs

• OS must verify caller’s arguments (e.g., pointers)

– OS (mostly) restores caller’s state

– OS returns by executing sysret instruction 

• Automatically sets PC to return address and sets execution mode to 

user
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A kernel crossing illustrated

user mode

kernel mode

Firefox: read(int fileDescriptor, void *buffer, int numBytes)

Save user PC

PC = trap handler address

Enter kernel mode

Save app state

Verify syscall number

Find sys_read( ) handler in vector table

trap handler

sys_read( ) kernel routine

Verify args

Initiate read

Choose next process to run

Setup return values

Restore app state

SYSRET instruction

PC = saved PC

Enter user mode
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System call issues

• What would be wrong if a syscall worked like a 

regular subroutine call, with the caller specifying the 

next PC?

• What would happen if kernel didn’t save state?

• Why must the kernel verify arguments?

• How can you reference kernel objects as arguments 

to or results from system calls?
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Exception Handling and Protection

• All entries to the OS occur via the mechanism just 

shown

– Acquiring privileged mode and branching to the trap handler 

are inseparable

• Terminology:

– Interrupt:  asynchronous; caused by an external device

– Exception: synchronous; unexpected problem with 

instruction

– Trap: synchronous; intended transition to OS due to an 

instruction

• Privileged instructions and resources are the basis 

for most everything:  memory protection, protected 

I/O, limiting user resource consumption, …
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Memory protection

• OS must protect user programs from each other

– malice, bugs

• OS must also protect itself from user programs

– integrity and security

– what about protecting user programs from OS?

• Simplest scheme: base and limit registers

– are these protected?

Prog A

Prog B

Prog C

base reg

limit reg

base and limit registers 

are loaded by OS before 

starting program
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More sophisticated memory protection

• coming later in the course

• paging, segmentation, virtual memory

– page tables, page table pointers

– translation lookaside buffers (TLBs)

– page fault handling
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I/O control

• Issues:

– how does the OS start an I/O?

• special I/O instructions

• memory-mapped I/O

– how does the OS notice an I/O has finished?

• polling

• Interrupts

– how does the OS exchange data with an I/O device?

• Programmed I/O (PIO)

• Direct Memory Access (DMA)
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Asynchronous I/O

• Interrupts are the basis for asynchronous I/O

– device performs an operation asynchronously to CPU

– device sends an interrupt signal on bus when done

– in memory, a vector table contains list of addresses of kernel 

routines to handle various interrupt types

• who populates the vector table, and when?

– CPU switches to address indicated by vector index specified 

by interrupt signal

• What’s the advantage of asynchronous I/O?
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Timers

• How can the OS prevent runaway user programs 

from hogging the CPU (infinite loops?)

– use a hardware timer that generates a periodic interrupt

– before it transfers to a user program, the OS loads the timer 

with a time to interrupt

• “quantum” – how big should it be set?

– when timer fires, an interrupt transfers control back to OS

• at which point OS must decide which program to schedule next

• very interesting policy question: we’ll dedicate a class to it

• Should access to the timer be privileged?

– for reading or for writing?
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Synchronization

• Interrupts cause a wrinkle:
– may occur any time, causing code to execute that interferes 

with code that was interrupted

– OS must be able to synchronize concurrent processes

• Synchronization:
– guarantee that short instruction sequences (e.g., read-

modify-write) execute atomically

– one method: turn off interrupts before the sequence, execute 
it, then re-enable interrupts

• architecture must support disabling interrupts

– Privileged???

– another method:  have special complex atomic instructions

• read-modify-write

• test-and-set

• load-linked store-conditional
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“Concurrent programming”

• Management of concurrency and asynchronous 

events is biggest difference between “systems 

programming” and “traditional application 

programming”

– modern “event-oriented” application programming is a 

middle ground

– And in a multi-core world, more and more apps have internal 

concurrency

• Arises from the architecture

– Can be sugar-coated, but cannot be totally abstracted away

• Huge intellectual challenge

– Unlike vulnerabilities due to buffer overruns, which are just 

sloppy programming



Architectures are still evolving

• New features are still being introduced to meet modern 
demands

– Support for virtual machine monitors

– Hardware transaction support (to simplify parallel programming)

– Support for security (encryption, trusted modes)

– Increasingly sophisticated video / graphics

– Other stuff that hasn’t been invented yet…

• In current technology transistors are free – CPU makers are 
looking for new ways to use transistors to make their chips more 
desirable

• Intel’s big challenge:  finding applications that require new 
hardware support, so that you will want to upgrade to a new 
computer to run them
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Some questions

• Why wouldn’t you want a user program to be able to 
access an I/O device (e.g., the disk) directly?
– Why would you?!

• OK, so what keeps this from happening?  What 
prevents user programs from directly accessing the 
disk?

• How then does a user program cause disk I/O to 
occur?
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Some questions

• What prevents a user program from scribbling on the 
memory of another user program?
– Why might you want to allow it to?!

• What prevents a user program from scribbling on the 
memory of the operating system?

• What prevents a user program from over-writing its 
own instructions?
– Why do you want to prevent that?

– Why do you want to allow it?!

• What prevents a user program from running away 
with the CPU?


