
CSE 451: Operating Systems

Spring 2017

Module 2

Architectural Support for

Operating Systems

John Zahorjan

1© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski

© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski 2

• Processing power

– doubling every 18 months

– 60% improvement each year

– factor of 100 every decade

– 1980: 1 MHz Apple II+ = $2,000

(~$5,000 today)

• 1980 also 1 MIPS VAX-11/780 =

$120,000 (~$300,000 today)

– 2006: 3.0GHz Pentium D = $800

– 2013: 2.7GHz Quad Core = $369

– 2017: 2.66GHz Quad Core = $45

Even coarse architectural trends

impact tremendously the design of systems

© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski 3

Power Consumption

http://www.intel.com/pressroom/kits/core2duo/pdf/epi-trends-final2.pdf

© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski 4

Primary Memory / Disk Capacity

Primary Memory Bandwidth

© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski 5

© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski 6

• Optical bandwidth today

– Doubling every 9 months

– 150% improvement each year

– Factor of 10,000 every decade

– 10x as fast as disk capacity!

– 100x as fast as processor performance!!

• What are some of the implications of these trends?

– Just one example: We have always designed systems so

that they “spend” processing power in order to save “scarce”

storage and bandwidth!

A Recent Trend: Solid State Disks

© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski 7

http://www.embeddedstar.com/articles/2005/2/article20050207-4.html

© 2012 Gribble, Lazowska, Levy, Zahorjan 82

Storage Latency:
How Far Away is the Data?

Registers
On Chip Cache
On Board Cache

Memory

Disk

1
2

10

100

Tape /Optical
Robot

10 9

10 6

Olympia

This Building

This Room
My Head

10 min

1.5 hr

2 Years

1 min

Pluto

2,000 Years

Andromeda

© 2004 Jim Gray, Microsoft Corporation

A Long-standing Trend: Speed of Light

© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski CSE 451 #2 9

Year

SOL

Primary Memory Cost

• Primary memory cost

– 1972: 1MB = $1,000,000

– 1982: 512KW (~ 1.5Mb) = $50,000

– 2017: 64GB = $379(!!!)

© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski 10

Disk Cost

• Disk cost:
– Only a few years ago, we purchased disks by the megabyte

(and it hurt!)

– Today, 1 GB (a billion bytes) costs $1 $0.50 $0.07 from
Amazon (except you have to buy in increments of 40 80 250
GB)

• => 1 TB costs $1K $500 $20, 1 PB costs $1M $500K $20K

© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski 11

Where Have Resources Gone?

© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski 12

• Facetiously: “What Gordon giveth, Bill taketh away”

• Realistically: our expectations for what the system will do

increase relentlessly

– e.g., GUI

• “Software is like a gas – it expands to fill the available space”

– Nathan Myhrvold (1960-)

Microsoft Stock Price

© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski 13

Lower-level architecture affects the OS

even more dramatically

• The operating system supports sharing and

protection

– multiple applications can run concurrently, sharing resources

– a buggy or malicious application can’t nail other applications

or the system

• There are many approaches to achieving this

• The architecture determines which approaches are

viable (reasonably efficient, or even possible)

– includes instruction set (synchronization, I/O, …)

– also hardware components like MMU or DMA controllers

Architectural support can vastly simplify

(or complicate!) OS tasks

• e.g.: early PC operating systems (DOS, MacOS)

lacked support for virtual memory, in part because at

that time PCs lacked necessary hardware support

– Apollo workstation used two CPUs as a bandaid for non-

restartable instructions!

• Until very recently, Intel-based PCs still lacked

support for 64-bit addressing (which has been

available for a decade on other platforms: MIPS,

Alpha, IBM, etc…)
• Changed driven by AMD’s 64-bit architecture

© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski 14

© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski 15

Architectural features affecting OS’s

• These features were built primarily to support OS’s:

– timer (clock) operation

– synchronization instructions (e.g., atomic test-and-set)

– memory protection

– I/O control operations

– interrupts and exceptions

– protected modes of execution (kernel vs. user)

– privileged instructions

– system calls (and software interrupts)

– virtualization architectures

© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski 16

Privileged instructions

• only the OS should be able to:

– directly access I/O devices (disks, network cards)

• why?

– manipulate memory state management

• page table pointers, TLB loads, etc.

• why?

– manipulate special ‘mode bits’

• interrupt priority level

• why?

• but users can put any bit strings in memory they want

– so they can execute the same instructions that the OS does

• So how can this work?

– some instructions must be restricted to the OS

– known as privileged instructions

© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski 17

OS protection

• So how does the processor know whether to allow execution of

a privileged instruction?

– the architecture must support at least two modes of operation:

kernel mode and user mode

• VAX, x86 support 4 protection modes

– mode is set by status bit in a protected processor register

• user programs execute in user mode

• OS executes in kernel (privileged) mode (OS == kernel)

• Privileged instructions can be executed only in kernel

(privileged) mode

– what happens if code running in user mode attempts to execute a

privileged instruction?

© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski 18

Crossing protection boundaries

• Q: So how do user programs do something

privileged?

– e.g., how can you write to a disk if you can’t execute an I/O

instructions?

• A: They can’t (directly).

• User programs must call an OS procedure – that is,

get the OS to do it for them

– OS defines a set of system calls

– User-mode program executes system call instruction

• Syscall instruction

– Like a protected procedure call

Dynamic View

© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski CSE 451 #2 19

Time

user

code

HW state user

OS

user

code OS

privileged privilegeduser

syscall/sysret instructions

• The syscall instruction atomically:

– Saves the current (user) PC

– Sets the execution mode to privileged

– Sets the PC to a handler address (that was established by the OS

during boot)

• The sysret instruction atomically:

– Restores the previously saved user PC

– Sets the execution mode to unprivileged

© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski 20

Protected procedure call

• Similar to local procedure call…

– Caller puts arguments in a place callee expects (registers or stack)

– Caller causes jump to OS by executing syscall instruction

• The OS determines what address to start executing at, not the

caller

• One of the passed args is a syscall number, indicating which OS

function to invoke

– Callee (OS) saves caller’s state (registers, other control state) so it

can use the CPU

– OS function code runs

• OS must verify caller’s arguments (e.g., pointers)

– OS (mostly) restores caller’s state

– OS returns by executing sysret instruction

• Automatically sets PC to return address and sets execution mode to

user

© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski 21

© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski 22

A kernel crossing illustrated

user mode

kernel mode

Firefox: read(int fileDescriptor, void *buffer, int numBytes)

Save user PC

PC = trap handler address

Enter kernel mode

Save app state

Verify syscall number

Find sys_read() handler in vector table

trap handler

sys_read() kernel routine

Verify args

Initiate read

Choose next process to run

Setup return values

Restore app state

SYSRET instruction

PC = saved PC

Enter user mode

© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski 23

System call issues

• What would be wrong if a syscall worked like a

regular subroutine call, with the caller specifying the

next PC?

• What would happen if kernel didn’t save state?

• Why must the kernel verify arguments?

• How can you reference kernel objects as arguments

to or results from system calls?

© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski 24

Exception Handling and Protection

• All entries to the OS occur via the mechanism just

shown

– Acquiring privileged mode and branching to the trap handler

are inseparable

• Terminology:

– Interrupt: asynchronous; caused by an external device

– Exception: synchronous; unexpected problem with

instruction

– Trap: synchronous; intended transition to OS due to an

instruction

• Privileged instructions and resources are the basis

for most everything: memory protection, protected

I/O, limiting user resource consumption, …

© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski 25

Memory protection

• OS must protect user programs from each other

– malice, bugs

• OS must also protect itself from user programs

– integrity and security

– what about protecting user programs from OS?

• Simplest scheme: base and limit registers

– are these protected?

Prog A

Prog B

Prog C

base reg

limit reg

base and limit registers

are loaded by OS before

starting program

© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski 26

More sophisticated memory protection

• coming later in the course

• paging, segmentation, virtual memory

– page tables, page table pointers

– translation lookaside buffers (TLBs)

– page fault handling

© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski 27

I/O control

• Issues:

– how does the OS start an I/O?

• special I/O instructions

• memory-mapped I/O

– how does the OS notice an I/O has finished?

• polling

• Interrupts

– how does the OS exchange data with an I/O device?

• Programmed I/O (PIO)

• Direct Memory Access (DMA)

© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski 28

Asynchronous I/O

• Interrupts are the basis for asynchronous I/O

– device performs an operation asynchronously to CPU

– device sends an interrupt signal on bus when done

– in memory, a vector table contains list of addresses of kernel

routines to handle various interrupt types

• who populates the vector table, and when?

– CPU switches to address indicated by vector index specified

by interrupt signal

• What’s the advantage of asynchronous I/O?

© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski 29

Timers

• How can the OS prevent runaway user programs

from hogging the CPU (infinite loops?)

– use a hardware timer that generates a periodic interrupt

– before it transfers to a user program, the OS loads the timer

with a time to interrupt

• “quantum” – how big should it be set?

– when timer fires, an interrupt transfers control back to OS

• at which point OS must decide which program to schedule next

• very interesting policy question: we’ll dedicate a class to it

• Should access to the timer be privileged?

– for reading or for writing?

© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski 30

Synchronization

• Interrupts cause a wrinkle:
– may occur any time, causing code to execute that interferes

with code that was interrupted

– OS must be able to synchronize concurrent processes

• Synchronization:
– guarantee that short instruction sequences (e.g., read-

modify-write) execute atomically

– one method: turn off interrupts before the sequence, execute
it, then re-enable interrupts

• architecture must support disabling interrupts

– Privileged???

– another method: have special complex atomic instructions

• read-modify-write

• test-and-set

• load-linked store-conditional

© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski 31

“Concurrent programming”

• Management of concurrency and asynchronous

events is biggest difference between “systems

programming” and “traditional application

programming”

– modern “event-oriented” application programming is a

middle ground

– And in a multi-core world, more and more apps have internal

concurrency

• Arises from the architecture

– Can be sugar-coated, but cannot be totally abstracted away

• Huge intellectual challenge

– Unlike vulnerabilities due to buffer overruns, which are just

sloppy programming

Architectures are still evolving

• New features are still being introduced to meet modern
demands

– Support for virtual machine monitors

– Hardware transaction support (to simplify parallel programming)

– Support for security (encryption, trusted modes)

– Increasingly sophisticated video / graphics

– Other stuff that hasn’t been invented yet…

• In current technology transistors are free – CPU makers are
looking for new ways to use transistors to make their chips more
desirable

• Intel’s big challenge: finding applications that require new
hardware support, so that you will want to upgrade to a new
computer to run them

3232© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski

© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski 33

Some questions

• Why wouldn’t you want a user program to be able to
access an I/O device (e.g., the disk) directly?
– Why would you?!

• OK, so what keeps this from happening? What
prevents user programs from directly accessing the
disk?

• How then does a user program cause disk I/O to
occur?

© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski 34

Some questions

• What prevents a user program from scribbling on the
memory of another user program?
– Why might you want to allow it to?!

• What prevents a user program from scribbling on the
memory of the operating system?

• What prevents a user program from over-writing its
own instructions?
– Why do you want to prevent that?

– Why do you want to allow it?!

• What prevents a user program from running away
with the CPU?

