
,, --t

V>
.,

0 -· c.. c..
< QJ QJ

::J < < • • • •

n ., n
::r ([) 0
...... QJ ::::s
0

c.. c..

~

(D -· .

::J !:! .

r-

.,
0 -·

........___

N
(v

~ ::::s
QJ

('

.,
<

!:t.
V\

-· r-+ QJ

r

(D .,
0

., -· - QJ

::J
\I\

0 c--n
(D A
Vl l/')

p,
>
C

Synchronization Motivation

• When threads concurrently read/write shared
memory, program behavior is undefined

- Two threads write to the same variable; which one
should win?

• Thread schedule is non-deterministic

- Behavior changes when re-run program

• Compiler/hardware instruction reordering

• Multi-word operations are not atomic

Locks

• Lock: :acquire

- wait until lock is free, then take it

• Lock::release

- release lock, waking up anyone waiting for it

1. At most one lock holder at a time (safety)

2. If no one holding, acquire gets lock (progress)

3. If all lock holders finish and no higher priority

waiters, waiter eventually gets lock (progress)

Question

• If tryget returns NULL, do we know the buffer
is empty?

• If we poll tryget in a loop, what happens to a
thread calling tryput?

•

M-4- ~ \-ft-, ~ ,("),,-... -::>

~~)~Example: Bounded Buffer
tryget() {

lock.acquire();

}

item= NULL;
if (front< tail) {

}

item = buf[front % MAX];
front++;

lock.release();
return item;

tryput(item) {
lock.acquire();

success = FALSE;

}

if ((tail - front) < MAX) {
buf[tail % MAX] = item;
tail++;
success= TRUE;

}

lock.release();
return success;

Initially: front = tail = O; lock= FREE; MAX is buffer capacity

Condition Variables

• Waiting inside a critical section

- Called only when holding a lock

t\ef--(• Wait: atomically release lock and relinquish
processor

- Reacquire the lock when wakened

t\L 4 • Signal: wake up a waiter, if any

\l(.u~ • Broadcast: wake up all waiters, if any
,.,_iv

Condition Variable Design Pattern

methodThatWaits() {

lock.acquire();

}

// Read/write shared state

while (!testSharedState()) {

cv. wait(&lock);
--==;>- r, n (, -(
}

r-\.c.) ~oL ocJ(. • A ,'f 6.. (L \ I n) (' \
q-- e_«;;-\- s k.-~ ~ h--i-~ .))

-:;-.,...cz..+.~.-..czr R .. ~(

// Read/write shared state

lock.release();

methodThatSignals() {

lock.acquire();

}

// Read/write shared state

// If testSharedState is now true

cv .signal(&lock);

// Read/write shared state

lock. release();

~
c--,

A ~, oc"- '- ~
~

\ J#>.."-._ l,lc.. f fb,+--:.-+:.l = <p lx
f,~- 1' "h.-,

Example: Bounded Buffer

get() {

lock.acquire();

..--.... while (front== tail) {
A .. => empty.wait(&lock);

}

}

item = buf[front % MAX];
.front++;

fu I I.sign a I (&lock);

lock.release();

return item;

f3. put(item){
~ lock.acquire();

~ while ((tail -front)== MAX) {
fu 11. wait(&lock);

}
__, buf[tail % MAX] = item;
_.., tail++·

I

-.:, empty.signal(&lock);

-) lock.release();

}

Initially: front= tail = O; MAX is buffer capacity
empty/full are condition variables

Question

Does the kth call to get return the kth item put?

Hint: wait must re-acquire the lock after the
signaller releases it.

Pre/Post Conditions

• What is state of the bounded buffer at lock
acquire? .

- front<= tail

- tail - front<= MAX

• These are also true on return from wait

• And at lock release

• Allows for proof of correctness
4

I O("J'- X

(l>c. l(. 't

8
{ oc.l ~
(oc:,l }(

Pre/Post Conditions

methodThatWaits() {
lock.acquire();

}

// Pre-condition: State is consistent

// Read/write shared state

while (!testSharedState()) {
cv.wait(&lock);

}

// WARNING: shared state may
// have changed! But
// testSharedState is TRUE
// and pre-condition is true

// Read/write shared state
lock.release();

methodThatSignals() {
lock.acquire();

}

// Pre-condition: State is consistent

// Read/write shared state

// If testSharedState is now true
cv. sign a I (& I ock);

// NO WARNING: signal keeps lock

// Read/write shared state
lock.release();

Rules for Condition Variables

• ALWAYS hold lock when calling wa.it, signal,
broadcast
- Condition variable is sync FOR shared state
- ALWAYS hold lock when accessing shared state

• Condition variable is memoryless
- If signal when no one is waiting, no op
- If wait before signal, waiter wakes up

• Wait atomically releases lock
- What if wait, then release?
- What if release, then wait?

Rules for Condition Variables, cont'd

• When a thread is woken up from wait, it may not
run immediately
- Signal/broadcast put thread on ready list
- When lock is released, anyone might acquire it

• Wait MUST be in a loop
while (needToWait()) {

condition.Wait(&lock);
}

• Simplifies implementation
- Of condition variables and locks
- Of code that uses condition variables and locks

Java Manual

When waiting upon a Condition, a "spurious
wakeup" is permitted to occur, in general, as a
concession to the underlying platform
semantics. This has little practical impact on
most application programs as a Condition
should always be waited upon in a loop,
testing the state predicate that is being waited
for.

Structured Synchronization

• Identify objects or data structures that can be accessed by
multiple threads concurrently
- In kernel~ everythingl

• Add locks to object/module
- Grab lock on start to every method/procedure

· - Release lock on finish

• If need to wait
- while(needToWait()) { condition.Wait(lock); }
- Do not assume when you wake up, signaller just ran

• If do something that might wake someone up
- Signal or Broadcast

• Always leave shared state variables in a consistent state
- When lock is released, or when waiting

Remember the rules

• Use consistent structure

• Always use locks and condition variables

• A·lways acquire lock at beginning of
procedure, release at end

· • Always hold lock when using a condition

variable

• Always wait in while loop

• Never spin in sleep()

