Synchronization

Today: Implementation issues

Readers/Writers Lock

e A common variant for mutual exclusion
— One writer at a time, if no readers
— Many readers, if no writer

* How might we implement this?
— ReaderAcquire(), ReaderRelease()
— WriterAcquire(), WriterRelease()
— Need a lock to keep track of shared state

— Need condition variables for waiting if readers/
writers are in progress

— Some state variables

Readers/Writers Lock

Lock lock = FREE

CV okToRead = nil

CV okToWrite = nil

AW =0 //active writers
AR =0 // active readers
WW =0 // waiting writers
WR =0 // waiting readers

Lock lock = FREE lock.Acquire(); lock.Acquire();

while (AW >0 || WW >0) { while (AW >0 || AR > 0) {

CV okToRead = nil WR++; WW++;

CV okToWrite = nil okToRead.wait(&lock); okToRead.wait(&lock);
WR--; WW--;

AW =0 } }

AR=0 AR++; AW++;

WW =0 lock.Release(); lock.Release();

WR=0

Read data

lock.Acquire();

AR--;

if (AR==0&& WW >0)
okToWrite.Signal();

lock.Release();

Write data

lock.Acquire();

AW--;

if (WW > 0)
okToWrite.Signal();

else if (WR > 0)
okToRead.Broadcast();

lock.Release();

Readers/Writers Lock

e Can readers starve?
— Yes: writers take priority

e Can writers starve?

— Yes: a waiting writer may not be able to proceed, if
another writer slips in between signal and wakeup

Readers/Writers Lock,
w/o Writer Starvation Take 1

Writer() {
lock.Acquire();
// check if another thread is already waiting
while ((AW + AR + WW) > 0) {
WW++;
okToWrite.Wait(&lock);
WW--;
}
AW++;
lock.Release();

Readers/Writers Lock
w/o Writer Starvation Take 2

// check in // check out
lock.Acquire(); lock.Acquire();
myPos = numWriters++; AW--;
while (AW + AR>0 || nextToGo++;
myPos > nextToGo){ if (WW >0) {

WW++; okToWrite.Signal(&lock);

okToWrite.Wait(&lock); }else if (WR > 0)

WW--; okToRead.Bcast(&lock);
) lock.Release();
AW++;

lock.Release();

Readers/Writers Lock
w/o Writer Starvation Take 3

// check in // check out

lock.Acquire(); lock.Acquire();

myPos = numWriters++; AW--;

myCV = new CV; nextToGo++;

writers.Append(myCV); if (WW >0){

while (AW + AR>0 | | cv = writers.RemoveFront();

myPos > nextToGo) { cv.Signal(&lock);

WW++; } else if (WR > 0)
myCV.Wait(&lock); okToRead.Broadcast(&lock);
WW--; lock.Release();

}

AW++;

delete myCV;

lock.Release();

Mesa vs. Hoare semantics

* Mesa
— Signal puts waiter on ready list
— Signaller keeps lock and processor

* Hoare

— Signal gives processor and lock to waiter

— When waiter finishes, processor/lock goes back to
signaller

* All systems you will use are Mesa

FIFO Bounded Buffer
(Hoare semantics)

get() { put(item) {
lock.acquire(); lock.acquire();
if (front == tail) { if ((tail — front) == MAX) {

empty.wait(&lock); full. wait(&lock);

} }
item = buf[front % MAX]; buf[last % MAX] = item;
front++; last++;
full.signal(&lock); empty.signal(&lock);
lock.release(); // CAREFUL: someone else ran
return item; lock.release();

} }

Initially: front = tail = 0; MAX is buffer capacity
empty/full are condition variables

FIFO Bounded Buffer
(Mesa semantics)

Create a condition variable for every waiter
Queue condition variables (in FIFO order)
Signal picks the front of the queue to wake up
CAREFUL if spurious wakeups!

Easily extends to case where queue is LIFO,
priority, priority donation, ...

— With Hoare semantics, not as easy

FIFO Bounded Buffer
(Mesa semantics, put() is similar)

get() { delete cv;
lock.acquire(); item = buf[front % MAX];
myPosition = numGets++; front++;
cv = new CV; if (next = nextPut.remove()) {
nextGet.append(cv); next->signal(&lock);
while (front < myPosition }
| | front == tail) { lock.release();
cv.wait(&lock); return item;
} }

Initially: front = tail = numGets = 0; MAX is buffer capacity
nextGet, nextPut are queues of Condition Variables

Implementing Synchronization

Concurrent Applications

Semaphores Locks Condition Variables

Interrupt Disable Atomic Read/Modify/Write Instructions

Multiple Processors Hardware Interrupts

Implementing Threads: Roadmap

e Kernel threads
— Thread abstraction only available to kernel

— To the kernel, a kernel thread and a single
threaded user process look quite similar

 Multithreaded processes using kernel threads
(Linux, MacOS, Windows)

— Kernel thread operations available via syscall

e User-level threads (Windows)
— Thread operations without system calls

Multithreaded OS Kernel

Kernel

Code Kernel Thread 1 Kernel Thread 2 Kernel Thread 3 Process 1 Process 2
Globals TCB 1 TCB 2 TCB 3 PCB 1 PCB 2
Stack Stack Stack Stack Stack
Heap RPN RPN RPN ‘ \
Process 1 Process 2
User-Level Processes Thread Thread
Stack Stack
Code Code
Globals Globals
Heap Heap

Thread Context Switch

* Voluntary
— Thread_yield
— Thread_join (if child is not done yet)

* |[nvoluntary
— Interrupt or exception
— Some other thread is higher priority

Voluntary thread context switch

Called by old thread

Save registers on old stack
Switch to new stack, new thread
Restore registers from new stack
Return to new thread

Exactly the same with kernel threads or user
threads

X86 swtch

push %rbp pop %rl15
push %rbx pop %rl4
push %rl1l pop %rl3
push %rl12 pop %rl12
push %rl3 pop %rll
push %ri14 pop %rbx
push %rl15 pop %rbp
mov %rsp, (%rdi) ret

mov %rsi, %rsp

// save/restore callee save registers, not caller save

A Subtlety

Thread create puts new thread on ready list

Some thread calls switch, picks that thread to run
next

— Saves old thread state to stack

— Restores new thread state from stack

What does the new thread stack contain so this will
work?

— Set up thread’s stack as if it had saved its state in switch
— “returns” to PC saved at base of stack to run thread

Two Threads Call Yield

Thread 1’s instructions

“return” from thread_switch
into stub

call go

call thread_yield

choose another thread

call thread_switch

save thread 1 state to TCB

load thread 2 state

return from thread_switch
return from thread_yield
call thread_yield

choose another thread
call thread_switch

Thread 2’s instructions

“return” from thread switch
into stub

call go

call thread_yield

choose another thread

call thread switch

save thread 2 state to TCB

load thread 1 state

Processor’s instructions

“return” from thread_switch
into stub

call go

call thread_yield

choose another thread

call thread_switch

save thread 1 state to TCB

load thread 2 state

“return” from thread switch
into stub

call go

call thread_yield

choose another thread

call thread switch

save thread 2 state to TCB

load thread 1 state

return from thread_switch

return from thread yield

call thread_yield

choose another thread

call thread_switch

Involuntary Thread/Process Switch
(Simple, Slow Version)

Timer or 1/O interrupt
— Tells OS some other thread/process should run

End of interrupt handler calls switch, before
resuming the trapframe

When thread is switched back in, resumes the
handler

Handler restores the trapframe to resume the
user process

Involuntary Thread/Process Switch
(Fast Version)

Interrupt handler saves state of interrupted thread
on trapframe

At end of handler, switch to a new thread

We don’t need to come back to the interrupt
handler!

Instead: change switch so that it can restore directly
from the trapframe

On resume, pop trapframe to restore directly to the
interrupted thread

Multithreaded User Processes (Take 1)

e User thread = kernel thread (Linux, MacQS)

— System calls for thread fork, join, exit (and lock,
unlock,...)

— Kernel does context switch

— Simple, but a lot of transitions between user and
kernel mode

Kernel

Multithreaded User Processes

(Take 1)

Code Kernel Thread 1 Kernel Thread 2 Kernel Thread 3 Process 1 Process 2
S S S PCB 1 PCB 2
Globals | tc81 | [tcB2 | [toB3 | [TtcB1a| | TeB1B| | TcB2A| | TCB2B]|
Stack Stack Stack Stack Stack Stack Stack
Heap |:::::::::::| |:::::::::::| |:::::::::::| | | | | | | | |
Process 1 Process 2
User-Level Processes Thread A Thread B Thread A Thread B
| Stack || Stack | | Stack || Stack |
Code Code
Globals Globals
Heap Heap

Multithreaded User Processes (Take 2)

* Green threads (early Java)

— User-level library, within a single-threaded
process

— Library does thread context switch

— Preemption via upcall/UNIX signal on timer
interrupt

— Use multiple processes for parallelism
* Shared memory region mapped into each process

Multithreaded User Processes (Take 3)

e Scheduler activations (Windows 8)
— Kernel allocates processors to user-level library
— Thread library implements context switch
— Thread library decides what thread to run next
* Upcall whenever kernel needs a user-level
scheduling decision
* Process assigned a new processor
* Processor removed from process
e System call blocks in kernel

Implementing Locks
(Take 1)

Use memory load/store instructions
— See too much milk solution/Peterson’s algorithm
— Complex
— Need memory barriers
— Hard to test/verify correctness

Implementing Locks
(Take 2)

Lock::acquire() {
oldIPL = setInterrupts(OFF);
lockHolder = myTCB;
}
Lock::release() {
ASSERT(lockholder == myTCB);
lockHolder = NULL;
setinterrupts(oldIPL); // implies memory barrier

Lock Implementation, Uniprocessor

Lock::acquire() {

oldIPL = setinterrupts(OFF);

if (value == BUSY) {
waiting.add(myTCB);
myTCB->state = WAITING;
next = readyList.remove();
switch(myTCB, next);
myTCB->state = RUNNING;

} else {
value = BUSY;
lockHolder = myTCB;

}
setinterrupts(oldIPL);

}

Lock::release() {

ASSERT(lockHolder == myTCB);

oldIPL = setInterrupts(OFF);

if ('waiting.Empty()) {
next = waiting.remove();
next->state = READY;
readyList.add(next);
lockHolder = next;

} else {
value = FREE;

lockHolder = NULL;

}
setinterrupts(oldIPL);

What thread is currently running?

 Thread scheduler needs to know the TCB of the
currently running thread

— To suspend and switch to a new thread
— To check if the current thread holds a lock before
acquiring or releasing it
* On a uniprocessor, easy: just use a global
variable

— Change the value in switch

* On a multiprocessor?

What thread is currently running?
(Multiprocessor Version)

 Compiler dedicates a register
— MIPS: s7 points to TCB running on this CPU

 Hardware register holds processor number

— x86 RDTSCP: read timestamp counter and processor ID

— OS keeps an array, indexed by processor ID, listing
current thread on each CPU

* Fixed-size thread stacks: put a pointer to the TCB
at the bottom of its stack

— Find it by masking the current stack pointer

Mutual Exclusion Support on a
Multiprocessor

* Read-modify-write instructions

— Atomically read a value from memory, operate onit,
and then write it back to memory

— Intervening instructions prevented in hardware

— Implies a memory barrier

 Examples
— Test and set // read old value, set value to 1
— Intel: xchgb // read old value, set new value
— Compare and swap // test if old value has changed
// if not change it

Spinlocks

A spinlock waits in a loop for the lock to become
free

— Assumes lock will be held for a short time

— Used to protect the CPU scheduler and to
implement locks, CVs

oop: // pointer to lock value in (%eax)
ock xchgb (%eax), 1

jnz loop

Spinlocks

Spinlock::acquire() {
while (testAndSet(&lockValue) == BUSY)

lockHolder = myTCB;

}

Spinlock::release() {
ASSERT(lockHolder == myTCB);
lockHolder = NULL;
memorybarrier();
lockValue = FREE;

J

Spinlocks and Interrupt Handlers

* Suppose an interrupt handler needs to access
some shared data => acquires spinlock

— To put a thread on the ready list (I/O completion)
— To switch between threads (time slice)

 What happens if a thread holds that spinlock
with interrupts enabled?

— Deadlock is possible unless ALL uses of that
spinlock are with interrupts disabled

How Many Spinlocks?

e Various data structures
— Queue of waiting threads on lock X
— Queue of waiting threads on lock Y

— List of threads ready to run
* One spinlock per kernel? Bottleneck!
* One spinlock per lock

* One spinlock for the scheduler ready list
— Per-core ready list: one spinlock per core
— Scheduler lock requires interrupts off!

Lock Implementation, Multiprocessor

Lock::acquire() { Lock::release() {
spinLock.acquire(); ASSERT(lockHolder = myTCB);
if (value == BUSY) { spinLock.acquire();

waiting.add(myTCB); if (lwaiting.Empty()) {
suspend(&spinlock); next = waiting.remove();
ASSERT(lockHolder == lockHolder = next;
myTCB); sched.makeReady(next);
}else { } else {
value = BUSY; value = FREE;
lockHolder = myTCB; lockHolder = NULL;
} }
spinLock.release(); spinLock.release();

} }

Lock Implementation, Multiprocessor

Sched::suspend(SpinLock *sl) {

>x< .
TCB *next; Sched::makeReady(TCB
oldIPL = setinterrupts(OFF); *thread) {

schedSL.acquire(); oldIPL =setInterrupts(OFF);
sl->release(); schedSL.acquire();
myTCB->state = WAITING; readyList.add(thread);
next = readyList.remove(); thread->state = READY:

switch(myTCB, next);
myTCB->state = RUNNING;
schedSL.release(); }
setinterrupts(oldIPL);

schedSL.release();
setinterrupts(oldIPL);

Lock Implementation, Linux

Most locks are free most of the time. Why?
— Linux implementation takes advantage of this fact

Fast path

— If lock is FREE and no one is waiting, two instructions
to acquire the lock

— If no one is waiting, two instructions to release

Slow path
— If lock is BUSY or someone is waiting (see multiproc)

Two versions: one with interrupts off, one w/o

Lock Implementation, Linux

struct mutex { // atomic decrement
/* 1: unlocked ; O: locked; // %eax is pointer to count
negative : locked, lock decl (%eax)

possible waiters */ jns 1f // jump if not signed

// (if value is now 0)

call slowpath_acquire
1:

atomic_t count;
spinlock_t wait_lock;
struct list_head wait_list;

5

Application Locks

* A system call for every lock acquire/release?
— Context switch in the kernel!

* |nstead:
— Spinlock at user level

— “Lazy” switch into kernel if spin for period of time

e Or scheduler activations:
— Thread context switch at user level

