

Section 2
October 5th

Pipes:

What you can expect from the client:

● The client will never write more than 512 bytes if the client ever does, you may
consider this an error.

● For lab1 : Read will never read more bytes than have been written (this prevents
blocking) For lab2 onward, it may be the case that read asks for more bytes than have
been written.

Question for you: What should happen if the write end or the read end is closed? When can you
free the buffer of the pipe?

Some room for you to ponder

Look at the Piazza post: An argument for pipes
This gives an example of how pipes are used in bash. Note the usage of dup and close to
setup the file table for the program that is exec’ ed.

Allocate struct pipe at runtime: You probably need a struct pipe to track meta data of the
pipe and also the buffer. To do that, you need to define struct pipe and when there is
sys_pipe , you should kalloc() to get a memory page and treat that entire page as the
struct pipe .

What information do “struct pipe” has to track: offset of the reader, offset of the writer,
whether read side has closed, whether write side has closed

How to make “pipe” behave as a file: In your struct file , define an enum to indicate
whether it is a pipe or an inode. Also in your file struct, you need metadata to track if the file is
readable or writable. When a pipe is constructed, you need to construct two file structures, one
side is readable but not writable and the other is writable but not readable. In your file structure,
set a pointer to the pipe struct. Upon read/write to the file, check if it is a pipe and then call your
pipe-related functions.

