Section 10
December 7, 2017

Write-Ahead Logging
Once you have the create and append operations implemented, the next step will be to add crash protection.

Note: There are many ways to configure your log and API, I'm just going to introduce the one that seems the simplest
for a single transaction at a time log.

The way I'm going to structure our log today is of the form:

LS LS +1 LS +2 LS +2 LS +3 LS +4 LS+5 LS+6
Start i Tag x Blk x Tagy Blky Tag z Blk z Commit i
Where:

e LS: the first block of the log (denoted in super block)

Start i: Meta block that indicates the start of transaction i

Tag x: A block to indicate the next block will be placed at block number x on successful commit

Blk x: Is the data in block number x to be committed.

Commit i: Indicates the end of transaction i. Once this block is written to disk, the in memory dirty blocks can
be flushed to their respective blocks from the buffer cache.

API:

log start tx(): Will write the start block to the log (having a local static variable incrementing tx id)
log write (struct buf *):This will “replace” bwrite instead of flushing the buffer block to disk you will
want to set it's dirty bit (the flags, see B DIRTY) and add the tag and block data to the log.

e log end tx(): Will write the commit log (with id) to the log. After the commit record is flushed to disk, you
can flush all your dirty blocks to the disk.

e log recover (): Willwalk through the log and analyze what needs to be done to recover from a potential
crash.

Things to think about:

How are you going to keep track of which blocks are part of this transaction?

How big should your log region be on disk?

How does recovery work?

When should the recovery procedure be run?

In what order should you perform the writes that make up a single transaction to ensure consistency?

2 Scenarios (How many blocks do you think will be in the log at commit?):

1) File create (blocks)

2) Single block append
a) Worstcase (____ blocks)
b) Best case (___ blocks)

3) Multiblock append (as a function of n blocks) *Not required for your implementation*
a) Worstcase (____ blocks)
b) Bestcase (___ blocks)

