

Section 10
December 7, 2017

Write-Ahead Logging

Once you have the create and append operations implemented, the next step will be to add crash protection.

Note: There are many ways to configure your log and API, I’m just going to introduce the one that seems the simplest
for a single transaction at a time log.

The way I’m going to structure our log today is of the form:

LS LS + 1 LS + 2 LS + 2 LS + 3 LS + 4 LS + 5 LS + 6

Start i Tag x Blk x Tag y Blk y Tag z Blk z Commit i

Where:

● LS: the first block of the log (denoted in super block)
● Start i: Meta block that indicates the start of transaction i
● Tag x: A block to indicate the next block will be placed at block number x on successful commit
● Blk x: Is the data in block number x to be committed.
● Commit i: Indicates the end of transaction i. Once this block is written to disk, the in memory dirty blocks can

be flushed to their respective blocks from the buffer cache.

API:

● log_start_tx() : Will write the start block to the log (having a local static variable incrementing tx id)
● log_write(struct buf *) : This will “replace” bwrite instead of flushing the buffer block to disk you will

want to set it’s dirty bit (the flags, see B_DIRTY) and add the tag and block data to the log.
● log_end_tx() : Will write the commit log (with id) to the log. After the commit record is flushed to disk, you

can flush all your dirty blocks to the disk.
● log_recover() : Will walk through the log and analyze what needs to be done to recover from a potential

crash.

Things to think about:

● How are you going to keep track of which blocks are part of this transaction?
● How big should your log region be on disk?
● How does recovery work?
● When should the recovery procedure be run?
● In what order should you perform the writes that make up a single transaction to ensure consistency?

2 Scenarios (How many blocks do you think will be in the log at commit?):

1) File create (_____ blocks)
2) Single block append

a) Worst case (____ blocks)
b) Best case (___ blocks)

3) Multiblock append (as a function of n blocks) *Not required for your implementation*
a) Worst case (____ blocks)
b) Best case (___ blocks)

