
~ ~

0
c..

r
~

Q.)

< V>
• • < -

0\ 7

3 ::J
p v\

-c n
)7

\1")

- ::r
L

m
3

~

0
m
::J

::J -· ,.....
Q.) N
!:t. OJ
0 !:t.
::J 0 -· V,
(/')

::J
C
m
V,

Readers/Writers Lock

• A common variant for mutual exclusion
- One writer at a time, if no readers

- Many readers, if no writer

• How might we implement this?
- ReaderAcquire(), ReaderRelease()

- WriterAcquire(), WriterRelease()

- Need a lock to keep track of shared state

- Need condition variables for w·aiting if readers/
writers are in progress

- Some state variables

Readers/Writers Lock

Lock lock= FREE

CV okToRead = nil

CV okToWrite = nil

AW= 0 //active writers

AR = 0 // active readers

WW= 0 // waiting writers

WR= 0 // waiting readers

Lock lock= FREE lock.Acquire{); lock.Acquire{);
while (AW> 0 11 WW> O) { while (AW> 0 11 AR> O) {

CV okToRead = nil WR++;

CV okToWrite = nil okToRead.wait(&lock); _
WR--· ,

AW=O }
AR= 0 AR++;
WW= 0 lock.Release{);

WR=O

.__,

Read data

lock.Acquire{);
AR--· ,
if (AR == 0 && WW > O)
okToWrite.Signal{);

lock.Release{);

WW++; _ I -
vV ,. 1-Q...

okTo~wait(&lock);
WW--· ,

}

AW++;
lock.Release{);

Write data

lock.Acquire{);
AW--· ,
if (WW> 0)

okToWrite.Signal{);
else if (WR > O)
okToRead.Broadcast{);
lock.Release{);

Readers/Writers Lock

• Can readers starve.?

- Yes: writers take priority

• Can writers starve?

- Yes: a waiting writer may not be able to proceed, if
another writer slips in between signal and wakeup

Readers/Writers Lock,
w/o Writer Starvation Take 1

Writer() {

lock.Acquire();

// check if another thread is already waiting

. while ((AW+ AR+ WW)> 0) {

WW++;

}

okToWrite. Wait(&lock);

WW--· I

AW++;

lock. Re lease();

Readers/Writers Lock
w/o Writer Starvation Take 2

// check in

lock.Acquire();

myPos = numWriters++;

while ((AW+ AR> 0 11

}

myPos > nextToGo) {

WW++;

okToWrite.Wait(&lock);
WW--· I

AW++;

lock.Release();

//checkout

lock.Acquire();

AW--· I

nextToGo++;

if (WW> O) {

okTo Write .Sign a I (&lock);

} else if (WR > O)

okToRead. Beast(&lock);

lock.Release();

Readers/Writers Lock
w/o Writer Starvation Take 3

// check in //checkout
lock.Acquire(); lock.Acquire();
myPos = numWriters++; AW--;

myCV = new CV; nextToGo++;

writers.Append(myCV); if (WW > 0) {

while ((AW+ AR> 0 11 cv = writers.RemoveFront();

myPos > nextToGo) { cv.Signal(&lock);
WW++; } else if (WR > O)

myCV. Wait(&lock); okToRead. Broadcast(&lock);

WW--; lock.Release();

}

AW++;
delete myCV;

lock.Release();

Mesa vs. Hoare semantics

• Mesa

- Signal puts waiter on ready list

- Signaller keeps lock and processor

• Hoare

- Signal gives processor and lock to waiter

- When waiter finishes, processor/lock goes back to
· signaller

• All systems you will use are Mesa

FIFO Bounded Buffer

(Hoare semantics)
get() {

lock.acquire();

}

if (front == tail) {
empty. wait(&lock);

}
item = buf[front % MAX];
front++;
fu I I.sign a I(&lock);
lock.release();
return item;

put(item) {
lock.acquire();

}

if ((tail - front) == MAX) {
full. wait(&lock);

}

buf[last % MAX] = item;
last++;
empty .sign a I (&lock);

// CAREFUL: someone else ran
lock.release();

Initially: front= tail = O; MAX is buffer capacity
empty/full are condition variables

FIFO Bounded Buffer
(Mesa semantics)

• Create a condition variable for every waiter _

• Queue condition variables (in FIFO order)

• Signal picks the front of the queue to wake up

• CAREFUL if spurious wakeups!

• Easily extends to case where queue is LIFO,
priority, priority donation, ... ,

- With Ho~re semantics, not as easy

FIFO Bounded Buffer
(Mesa semantics, put() is similar)

get() {

lock.acquire();

myPositio,n = numGets++;

cv = new CV;

nextGet.append(cv);

while (front< myPosition

11 front == tail) {

· cv.wait(&lock);

} }

delete cv;

item = buf[front % MAX];

front++;

if (next= nextPut.remove()) {

next->signal(&lock);

}

lock.release();

return item;

Initially: front= tail = numGets = O; MAX is buffer capacity
nextGet, nextPut are queues of Condition Variables

lmpl~menting Synchronization
Concurrent Applications

Semaphores Locks Condition Variables
..---- -----

Interrupt Disable Atomic Read/Modify/Write Instructions

Multiple Processors Hardware Interrupts

---,
r
r 0

--1

'}O I'
I {)

(\ 0
)

7 ~
r p _;:-
)

/
-.) ~~ v'\ - 0

0

C

'-'l'
)
r

0
~

) r v
-1

):.
fJ7

I ~

I
~
('I
r

~
>

C
V'\

n
0

I r_
ff]

~
fJJ

l
7

c
- r

()

I
)

~

I I) :i 0
fV7

) I I I

~

I
I

~ ~
I

C
7 '

I
~

- I • 1

-+- rr-,.
--, ()

I
)

('>
f)

'

1-
~

p fl

r

,1

r

t1 r

d r
> --..t::

(

'v-
;-

Implementing Threads: Roadmap

• Kernel threads
- Thread abstraction only available to kernel

- To the kernel, a kernel thread and a single
threaded user process look quite similar

• Multithreaded processes using kernel threads
(Linux, MacOS, Windows)
- Kernel thread operations available via syscall

• User-level threads (Windows)
- Thread operations without system calls

Multithreaded OS Kernel

a
Kernel I 8

a

Kernel Thread 1 Kernel Thread 2 Kernel Thread 3 Process 1 Process 2

s
TCB 1

Stack

Ld . .

s s
TCB 2 TCB 3 PCB 1 PCB 2

Stack Stack Stack Stack

Ld LJ LJ

User-Level Processes
Process 1

Thread

Process 2

Thread

s
l22JStack

. .

a
a
a

s
l22JStack

. .

a
a
a

Thread Context Switch

• Voluntary
- Thread_yield

L o C- le. A C. ""\. v 1'r <?._

- (.> c_ lL ,5 s U ~ '1

- Thread_join (if child is not done yet) Co-£)_:-,.f-,-,-
u <-:-+

• Involuntary
- Interrupt or exception

- Some other thread is higher priority

Voluntary thread context switch

• Called by old thread

• Save registers on old stack

• Switch to new stack, new thread

• Restore registers from new stack

• Return to new thread

• Exactly the same with kernel threads or user
threads

push %rbp
push %rbx

push %rll
push %r12

push %r13
push %r14
push %r15

mov %rsp, {%rdi)

mov %rsi, %rsp

x86 swtch

pop %r15
pop %r14

pop %r13
pop %r12
pop %rll
pop %rbx
pop %rbp

ret

// save/restore callee save registers, not caller save

A Subtlety f d , {c_ \ e_ f-

• Thread_create puts new thread on ready list

• Some thread calls switch, picks that thread to run
next
- Saves old thread state to stack

- Restores new thread state from stack

• What does the new thread stack contain so this will
work?
- Set up thread's stack as if it had saved its state in switch

- "returns11 to PC saved at base of stack to run thread

Two Threads Call Yield
Thread l's instructions
"return" from thread switch

into stub
call go
call thread_yield
choose another thread
call thread switch
save thread 1 state to TCB
load thread 2 state

return from th read_ switch
return from thread_yield
call thread_yield
choose another thread
call th read switch

Thread 2's instructions

"return" from thread switch
into stub

call go
call thread_yield
choose another thread
call thread switch
save thread 2 state to TCB
load thread 1 state

Processor's instructions
"return" from thread switch

into stub
call go
call thread_yield
choose another thread
call thread switch
save thread 1 state to TCB
load thread 2 state
"return" from thread switch

into stub
call go
call thread_yield
choose another thread
call thread switch
save thread 2 state to TCB
load thread 1 state
return from thread switch
return from thread_yield
call thread_yield
choose another thread
call thread switch

IC Q_ ('r- (L. \

-tl~"g__ Involuntary Thread/Process Switch

µ s-e..,
Frnc_~s-s

I
\\ "S \.J'": t-c-l

,t-:',-<L..\

f /\-_-t°"
L-r

------1 •

(Simple, Slow Version) ~~~:J
Timer or 1/0 interrupt

hr~
- Tells OS some other thread/process should run 1-tr-tL·

I

• End of interrupt handler calls switch, before
resuming the trapframe

• When thread is switched back in, resumes the
handler

• Handler restores the trapframe to resume the
user process

Involuntary Thread/Process Sw-itch
(Fast Version)

• Interrupt handler saves state of interrupted thread
on trapframe

• At end of handler, switch to a new thread

• We don 1t need .to come back to the interrupt
handler I \

• Instead: change switch so that it can restore directly
from the trapframe

, .
• On resume, pop trapframe to restore directly to the

interrupted thread

~

~

~~
V)

\/\

I./)

[

t7
(

J)

~ J\ rt r r l
r ' ---re>

(Q r r
(_ .

~ ~ --t-
0--
\../ -- -------
('-)

V"

[
r)

t r

Multithreaded User Processes (Take 1)

• User thread = kernel thread (Linux, MacOS)

- System calls for thread fork, join, exit (and lock,
unlock, ...)

-

- Kernel does context switch

- Simple, but a lot of transitions between user and
kernel mode

Multithreaded User Processes
(Take 1)

G Kernel Thread 1 Kernel Thread 2 Kernel Thread 3 Process 1 Process 2

s s s I PCB 1 I I PCB 2 I
Kernel -I a I TCB 1 I I TCB 2 I I TCB 3 I I TCB 1.A I I TCB 1.B I I TCB 2.A I I TCB 2.B I

Stack Stack Stack Stack Stack Stack Stack

B 8.......... L=J·········· L=J·········· LJ LJ LJ LJ
........... •...••.•.•. .•.•.•....• ···········

,_:"'/

User-Level Proc
Process 1

Thread A Thread B

s s
astack a·~~~~~

a
a
a

Process 2
Thread A Thread B

s s
aStack a·~~~~~

G
a
a

Multithreaded User Processes (Take 2)

• Green threads (early Java)

- User-level library, within a single-threaded
process

- Library does thread context switch

- Preemption via upcall/UNIX signal on timer
interrupt

- Use multiple processes for parallelism

• Shared memory region mapped into each process

Multithreaded User Processes (Take 3)

• Scheduler activations (Windows 8)
- Kernel allocates processors to user-level library

- Thread library implements context switch

- Thread library decides what thread to run next

• Upcall whenever kernel needs a user-level
scheduling decision
• Process assigned a new processor

• Processor removed from process

• System call blocks in kernel

