Operating Systems:
Principles and Practice

How This Course Fits in the UW CSE
Curriculum

* CSE 333: Systems Programming
— Project experience in C/C++
— How to use the operating system interface

* CSE 451: Operating Systems
— How to make a single computer work reliably
— How an operating system works internally

* CSE 452: Distributed Systems

— How to make a set of computers work reliably,
despite failures of some nodes

New Project: xk

* Build an operating system
— That can boot on a real system
— Run multiple processes
— Page virtual memory
— Store file data reliably

* We give you some basic starting code
— Five assignments, that build on each other
— Work in groups of 2

* |nstructions on web page
— Download and browse code before section
— Bring laptop or smartphone to section

Main Points (for today)

Operating system definition

— Software to manage a computer’s resources for its
users and applications

OS challenges

— Reliability, security, responsiveness, portability, ...

OS history

— How did we get here?

How I/O works

What is an

User-mode

operating system?

System System System
o SOftwa re to Library Library Library
Kernel-user Interface
m a n a ge a Kernel-mode (Abstract virtual machine

)

CO m p ute r’ S [Virtual Memory]

resources for its [|]
TCP/IP Networking Scheduling

users and

Hardware Abstraction Layer

a p p I i Ca ti O n S [Hardware-Specific Software]

and Device Drivers

Hardware e Processors [Address Translation]
Disk /
Graphics Processor]
\

Operating System Roles

* Referee:
— Resource allocation among users, applications
— |Isolation of different users, applications from each other
— Communication between users, applications

* |llusionist

— Each application appears to have the entire machine to
itself

— Infinite number of processors, (near) infinite amount of
memory, reliable storage, reliable network transport

e Glue
— Libraries, user interface widgets, ...

Example: File Systems

e Referee

— Prevent users from accessing each other’s files
without permission

— Even after a file is deleted and its space re-used
* |llusionist

— Files can grow (nearly) arbitrarily large

— Files persist even when the machine crashes in the
middle of a save

e Glue
— Named directories, printf, ...

Client

Example: web service

(1)

HTTP GET index.html

(4)

HTTP web page

Server

(2)

Read file: index.html

(3)

3

index.html

File data

<

* How does the server manage many simultaneous
client requests?

* How do we keep the client safe from spyware
embedded in scripts on a web site?

* How do make updates to the web site so that clients
always see a consistent view?

OS Challenges

Reliability

— Does the system do what it was designed to do?
Availability

— What portion of the time is the system working?

— Mean Time To Failure (MTTF), Mean Time to Repair

Security
— Can the system be compromised by an attacker?

Privacy
— Data is accessible only to authorized users

OS Challenges

e Performance

— Latency/response time
* How long does an operation take to complete?
— Throughput
 How many operations can be done per unit of time?

— Overhead
 How much extra work is done by the OS?

— Fairness
 How equal is the performance received by different users?

— Predictability
 How consistent is the performance over time?

OS Challenges *=

User-mode

APP APP APP

¢ P O rta b | I |ty System System System

Library Library Library

_ . Kernel-user Interface
FO r p rog ra m S . (Abstract virtual machine

Kernel-mode

)
e Application programming [Virtual Memary]
interface (API)
. . TCP/IP Networking Scheduling
e Abstract virtual machine [

(AV M) Hardware Abstraction Layer
Hardware-Specific Software

and Device Drivers
Processors (Address Translation]
Graphics Processor]

N

— For the operating system

e Hardware abstraction
layer

Hardware

Disk

.

Compilers Web Servers Source Code Control

Databases Word Processing
Web Browsers Email
Portable
0S Library
System Call
Interface

Portable Operating
System Kernel

x86 ARM PowerPC

10Mbps/100Mbps/1Gbps Ethernet

802.11 a/b/g/n SCSI IDE

Graphics Accelerators LCD Screens

MVS

MS/DOS VMS

Windows

.............

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
o

Windows NT

|

Windows 8

Influence
Descendant

VM/370

VMW

BSD UNIX

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

are

OS History

Multics

UNIX

I

Linux

Android

Mach

NEXT MacOS

7

MacOS X

iI0S

Computer Performance Over Time

1981 1997 2014 (;:1‘3:;’:98 "

Uniprocessor speed (MIPS) 1 200 2500 2.5K
CPUs per computer 1 1 10+ 10+

Processor MIPS/$ $100K $25 $0.20 500K
DRAM Capacity (MiB)/$ 0.002 2 1K 500K
Disk Capacity (GiB)/$ 0.003 / 25K 10M

Home Internet 300bps 256 Kbps 20 Mbps 100K

10Mbps 100Mbps 10 Gbps

Machine room network (shared) (switched) (switched) OO0
Ratio of users 100:1 1:1 1:several 100+

to computers

Early Operating Systems:
Computers Very Expensive

* One application at a time
— Had complete control of hardware
— OS was runtime library
— Users would stand in line to use the computer

e Batch systems
— Keep CPU busy by having a queue of jobs
— OS would load next job while current one runs

— Users would submit jobs, and wait, and wait, and

Time-Sharing Operating Systems:
Computers and People Expensive

* Multiple users on computer at same time

— Multiprogramming: run multiple programs at
same time

— Interactive performance: try to complete
everyone’s tasks quickly

— As computers became cheaper, more important
to optimize for user time, not computer time

Today’s Operating Systems:
Computers Cheap

Smartphones
Embedded systems
Laptops

Tablets

Virtual machines
Data center servers

Device I/O

* OS kernel needs to communicate with physical
devices

— Network, disk, video, USB, keyboard, mouse, ...

* Devices operate asynchronously from the CPU
— Most have their own microprocessor
— Example: Apple Watch OS runs laptop keyboard

Device I/O

* How does the OS communicate with the
device?
— |/O devices assigned a range of memory addresses
— Separate from main DRAM memory

— To issue commands/read results:
 Special instructions (e.g., inb/outb)
e Read/write memory locations

Synchronous 1/0

* Polling

/O operations take time (physical limits)
OS pokes I/0 memory on device to issue request

While device is working, kernel polls /O memory
to wait until I/O is done

Device completes, stores data in its buffers

Kernel copies data from device into memory

Faster I/O: Interrupts

* |nterrupts
— OS pokes I/0 memory on device to issue request
— CPU goes back to work on some other task
— Device completes, stores data in its buffers
— Triggers CPU interrupt to signal I/O completion
— Device specific handler code runs

— When done, resume previous work

Faster I/O: DMA

* Programmed |/O
— /O results stored in the device
— CPU reads and writes to device memory

— Each CPU instruction is an uncached read/write
(over the I/O bus)

* Direct memory access (DMA)
— 1/0O device reads/writes the computer’s memory

— After I/O interrupt, CPU can access results in
memory

Faster 1/O: Buffer Descriptors

* Buffer descriptor: data structure to specify
where to find the I/O request

— E.g., packet header and packet body
— Buffer descriptor itself is DMA’ed!
* CPU and device I/O share a queue of buffer
descriptors
— |/O device reads from front
— CPU fills at tail

* Interrupt only if buffer empties/fills

Device Interrupts

* How do device interrupts work?
— Where does the CPU run after an interrupt?
— What is the interrupt handler written in? C? Java?

— What stack does it use?

— Is the work the CPU had been doing before the
interrupt lost forever?

— If not, how does the CPU know how to resume
that work?

Interrupt Vector

* Table set up by OS kernel; pointers to code to
run on different events (in xk, vectors.pl)

Processor

Register

.........

....................... >

Interrupt

Vector

.........

.........

.........

....................... > handleTimerlnterrupt() {

}

....................... > handleDivideByZero() {
}
....................... > handleSyStemca”() {

}

Interrupt Masking

* Interrupt handler runs with interrupts off
— Re-enabled when interrupt completes

* OS kernel can also turn interrupts off
— Eg., when determining the next process/thread to run

— On x86
e CLI: disable interrrupts

e STI: enable interrupts
* Only applies to the current CPU (on a multicore)
 We'll need this to implement synchronization in
chapter 5

Challenge: Saving/Restoring State

* We need to be able to interrupt and
transparently resume execution

— |/O device sighals I/O completion

— Periodic hardware timer to check if app is hung
— Multiplexing multiple apps on a single CPU

— Code unaware it has been interrupted!

* Not just the program counter

— Condition codes, registers used by interrupt
handler, ...

Question

 What (hardware, software) do you need to be
able to run an untrustworthy application?

Question

How should an operating system allocate
processing time between competing uses?

— Give the CPU to the first to arrive?

— To the one that needs the least resources to
complete? To the one that needs the most
resources?

Textbook

* Lazowska, Spring 2012: “The text is quite
sophisticated. You won't get it all on the first
pass. The right approach is to [read each
chapter before class and] re-read each
chapter once we've covered the
corresponding material... more of it will make
sense then. Don't save this re-reading until
right before the mid-term or final — keep up.”

Tomorrow’s Operating Systems

Giant-scale data centers

Increasing numbers of processors per
computer

Increasing numbers of computers per user
Very large scale storage

