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Main Points 

• Address Translation Concept 
- How do we convert a virtual address to a physical 

address? 

• Flexible Address Translation 
- Segmentation 

- Paging 

- Multilevel translation 

- • Efficient Address Translation 
- Translation Lookaside Buffers 

- Virtually and physically addressed caches 
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Address Translation Goals 

• Memory protection 
- Isolate process to its only memory 
- Prevent virus from re-writing machine instructions 

• Memory sharing 
- Shared libraries, interprocess communication 

• Sparse addresses 
- Dynamically allocated regions: heaps, stacks, mmap 

• Efficiency 
- Reduce fragmentation and copying 
- Runtime lookup cost and TLB hit rate 
- Translation table size 

• Portability 



Bonus Feature 

• What if the kernel can regain control whenever a 
program reads or writes a particular virtual 
memory location? 

• Examples: 
- Copy on write 

- Zero ·on reference 

- Fill on demand 

- Demand paging 

- Memory mapped files 

••• 



Virtually Addressed Base and Bounds 
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Virtually Addressed Base and Bounds 

• Pros? 
- Simple 

- Fast (2 registers, adder, comparator) 

- Safe 

- Can relocate in physical memory without changing 
process 

• Cons? 
- Can't keep program from accidentally overwriting its 

own code 

- Can't share code/data with other processes 

- Can't grow stack/heap as needed 



Process Regions or Segments 

• Every process has logical regions or segments 

- Contiguous region of process memory 

• Code, data, heap, stack, dynamic library (code, 
data), memory mapped files, ... 

• Each with its own 

- protection: read-only, read-write, execute-only 

- sharing: code vs. data 

- access pattern: code vs. mmap file 



Segmentation . 

• Segment is a contiguous region of virtual memory 

• Each process has a segment table {in hardware) 

- Entry in table = segment 

• Segment can be located anywhere in physical 
memory 

- Each segment has: start, length, access permission 

• Processes can share segments 

- Same start, length, same/different access permissions 
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Question 

• With segmentation, what is saved/restored on 
a process context switch? 
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Processor's View 
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Segmentation 
• Pros? 

- Can share code/data segments between processes 

- Can protect code segment from being overwritten 

• Cons? Complex memory management 

- Need to find chunk of a particular size 

- May need to rearrange memory to make room for 
new segment or growing segment (e.g., sbrk) 

- External fragmentation: wasted space between 
chunks 



Paged Translation 

• Manage memory in fixed size units, or pages 

• Finding a free page is easy 
- Bitmap allocation: 0011111100000001100 

- Each bit represents one physical page frame 

• Each process has its own page table 
- Stored in physical memory 

- Hardware registers 
• pointer to page table start 

• page table length · 
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Paging Questions 

• With paging, what is saved/restored .on a 
process context s·witch? 

- Pointer to page table, size of page table 

- Page table itself is in main memory 

• What if page size is very small? 

• What if page size is very large? 

- Internal fragmentation: if we don't need all of the 
space inside a fixed size chunk 



Paging and Sharing 

• Can we use page tables to share memory 
between processes? 

• Set page tables to point to same page frame 

• Need core map 

- Array of information about each physical page frame 

- Set of processes pointing to that page frame 

- When reference count goes to zero, can reclaim! 



Question 

•· How big a user stack should I allocate? 

• What if some programs need a large stack and 
others need a small one? 



Expand Stack on Reference 

• When program references memory beyond 
end of stack 

- Page fault into OS kernel 

- Kernel allocates some additional memory 

• How much? 

- Remember to zero the memory to avoid 

accidentally leaking information! ~, i () c 
- Modify page table .- ( ~--~ ><- C 10000()\ 

- Resume process b,~ 
be., 
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UNIX fork seems inefficient 

• Makes a complete copy of process 

• Throw copy away on exec 

• Do we need to make the copy? 

- One solution: change the syscall interface! 



Copy on Write 

• Paging allows an efficient fork 

- Copy page table of parent into child 

- Mark all pages (in new/old page tables) as read-only 

- Start child process; restart parent 

- Trap into kernel on write (in child or parent) 

- Copy page 
0 /'- c.. 

- Mark~ as writeable t)~~rs ' 0 r 
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