
)>
c..
c.. ...,
(l)
V>
V>

-I ...,
OJ
:J
V> -OJ
!:t.
0
:J

\

Main Points

• Address Translation Concept
- How do we convert a virtual address to a physical

address?

• Flexible Address Translation
- Segmentation

- Paging

- Multilevel translation

- • Efficient Address Translation
- Translation Lookaside Buffers

- Virtually and physically addressed caches

Address Tr·anslation Concept

Virtual

Address

Mrtu

Processor l··················· .. ··>I Translation I Invalid ··········;) Raise
Exception

~

Data
,!'I

Valid

· >

Physical

Address

Physical
Memory

...
Data

Address Translation Goals

• Memory protection
- Isolate process to its only memory
- Prevent virus from re-writing machine instructions

• Memory sharing
- Shared libraries, interprocess communication

• Sparse addresses
- Dynamically allocated regions: heaps, stacks, mmap

• Efficiency
- Reduce fragmentation and copying
- Runtime lookup cost and TLB hit rate
- Translation table size

• Portability

Bonus Feature

• What if the kernel can regain control whenever a
program reads or writes a particular virtual
memory location?

• Examples:
- Copy on write

- Zero ·on reference

- Fill on demand

- Demand paging

- Memory mapped files

•••

Virtually Addressed Base and Bounds

Processor's View

Virtual
Address

Processor I·········=

Virtual
Memory

Implementation

Base

Virtual Physical

Physical
Memory

1----""1 Base

Address ~ Address
Processor I············=····················~©····················;··········· ·········>

Bound

,.. Raise
: ················•CB········> Exception
......

Base+ i----., Bound

Virtually Addressed Base and Bounds

• Pros?
- Simple

- Fast (2 registers, adder, comparator)

- Safe

- Can relocate in physical memory without changing
process

• Cons?
- Can't keep program from accidentally overwriting its

own code

- Can't share code/data with other processes

- Can't grow stack/heap as needed

Process Regions or Segments

• Every process has logical regions or segments

- Contiguous region of process memory

• Code, data, heap, stack, dynamic library (code,
data), memory mapped files, ...

• Each with its own

- protection: read-only, read-write, execute-only

- sharing: code vs. data

- access pattern: code vs. mmap file

Segmentation .

• Segment is a contiguous region of virtual memory

• Each process has a segment table {in hardware)

- Entry in table = segment

• Segment can be located anywhere in physical
memory

- Each segment has: start, length, access permission

• Processes can share segments

- Same start, length, same/different access permissions

Processor's View

Virtual

Memory

Virtual B
Address Code

Processor I·········=

:•

Data

B
I Stack I

Segmentation

Processor

Implementation

Virtual

Address

Segment Table

Base Bound Access

--•I Segment! Offset Read

I R/W

R/W

R/W

,;, .
······················•©···············! ~~Y.~~~al Address : ···············

,.. Raise
·········•~········> Exception

....................

~x+~rl\<. \
f rc..),-ece ... --~-~.+i "'/\..

Physical
Memory

Stack

Code

·····3>

Data

Heap

Base 3

Base+
Bound 3

Base O

Base+
Bound O

Base 1

Base+
Bound 1

Base 2

Base+
Bound 2

°J>'·hI ><2~ 'e_)· 2 bit segment#

I) Wsc.:+ 12 bit offset

Virtual Memory

---5 main: 0:240

--===, 0:244

0:248

0:24c

...
strlen: 0:360

...
0:420

...
x: 1:108

...
1,-·· 2({0

~ Segment start length
"ii

code 0x4000

data 0

heap

stack 0x2000

store #108, r2

store pc+8, r31

jump 360

-

loadbyte (r2), r3

...

jump (r31)

ab C \0

".)rt-fk:cs ;',-s-+r

-
_,:;

x: 108

...

0x700

0xS00

0xl000

hfflain: 4240

4244

4248

424c

. ..
strlen: 4360

. ..
4420

...

Physical Memory .

ab C \0

store #1108, r2

store pc+8, r31

jump 360

. ..
loadbyte (r2),r3

jump (r31)

Question

• With segmentation, what is saved/restored on
a process context switch?

: ""

·,

Y- yl ·- l 5 lbS4\ QQ._ s <. , :I' 'tor t-,._ ~ r ._ r~ ~ ~ +<:? r

se),-..~"-J- · h~\~

Processor's View

Process fs View

Processor

.········>

Virtual
Memory

Code

Address Data
Virtual B
Ox0500

B
. I Stack I

Process 2's View

Processor
.. ..r······>~ D
Address Data
Virtual B

·oxo5oo

B
I Stack I

Implementation

Processor
-;-,._~ .._ (.,l

Seg. Offset
gment Table J

ound Access

L .• 1 0 I 500 Read

Virtual

Physical
Memory

P2's
Data

P1's
Heap

P1's
Stack

R/W
Addre§ ! I

~ !ii Stac1-i~ _L__··/···f-···=~.h.=x.=~!~r::i~.11~.A J.!\.d~.ld~~r.~.~~····=
~ ' '+'··········· · = •••• •. • • •.•.•• ··>\!:/

P1's
Data

P2's

:•
:········>

Processor r·······················•<±>···························· ····· ···················!

Seg . Offset j

···I O I 500 I Code

Virtual Data

Address Heap
r

~) " 0 (!tack l l ._

,..,

Bm;e

Segment Table

Bound Access

Read

R/W

R/W

R/W

Heap

P1 's+
P2's
Code

P2's
Stack

<=:::

Segmentation
• Pros?

- Can share code/data segments between processes

- Can protect code segment from being overwritten

• Cons? Complex memory management

- Need to find chunk of a particular size

- May need to rearrange memory to make room for
new segment or growing segment (e.g., sbrk)

- External fragmentation: wasted space between
chunks

Paged Translation

• Manage memory in fixed size units, or pages

• Finding a free page is easy
- Bitmap allocation: 0011111100000001100

- Each bit represents one physical page frame

• Each process has its own page table
- Stored in physical memory

- Hardware registers
• pointer to page table start

• page table length ·

Processor's View Physical
_Memory

VPage o[
VPage 1 [

VPage N[

Code

Data

Heap

. .

~ . .

Stack

: ~
.

•....•....•••.••••••••. ·> .
• ••..••.•.• ·>: •:• ···> : ..••. ~· ••••••••• ·> .

...................... ; ; >
.

.

Code>

DataO
Heap1

Code1
Heap)

Data1

. Heap2 • ·>

.......•.. : ·> Stack1

: ·> StackO

Frame O

Frame M

Processor

L. >I

··················>

Physical
Address

Physical
Memory

I I
Frame O
Frame 1

I I

~ ~I Frame I Offset I··
Virtual

Address

Page # I Offset

····················~·····················~

~

~Page Table

Frc:tme Access

Virtual
Address

........................ , ... :

····················i·····················~

_ Physical

t Address

~
...

··•

:···········>

Frame M

~
--~~-r---·· -_ -_____ U>_o -~ --------.
1 /3 r- A ._ - I G) -n m

0 -
1

c:,no:,)> :CG)"'Tlm

i

o n OJ l>

-c
QJ

OQ
(D

--i
QJ
c-
m

" '

-c -,
0
n
(D
V,
V,

<

-c
::::r
<
V, -· n
QJ

s:
(D

3
0 -,
<

Paging Questions

• With paging, what is saved/restored .on a
process context s·witch?

- Pointer to page table, size of page table

- Page table itself is in main memory

• What if page size is very small?

• What if page size is very large?

- Internal fragmentation: if we don't need all of the
space inside a fixed size chunk

Paging and Sharing

• Can we use page tables to share memory
between processes?

• Set page tables to point to same page frame

• Need core map

- Array of information about each physical page frame

- Set of processes pointing to that page frame

- When reference count goes to zero, can reclaim!

Question

•· How big a user stack should I allocate?

• What if some programs need a large stack and
others need a small one?

Expand Stack on Reference

• When program references memory beyond
end of stack

- Page fault into OS kernel

- Kernel allocates some additional memory

• How much?

- Remember to zero the memory to avoid

accidentally leaking information! ~, i () c
- Modify page table .- (~--~ ><- C 10000()\

- Resume process b,~
be.,

7 Q
Too ~

3

UNIX fork seems inefficient

• Makes a complete copy of process

• Throw copy away on exec

• Do we need to make the copy?

- One solution: change the syscall interface!

Copy on Write

• Paging allows an efficient fork

- Copy page table of parent into child

- Mark all pages (in new/old page tables) as read-only

- Start child process; restart parent

- Trap into kernel on write (in child or parent)

- Copy page
0 /'- c..

- Mark~ as writeable t)~~rs ' 0 r
) ._ s) <...Q__) <2._{ ~-c:: ~

- Resume execution c-~ .. ~.)"\ .. , c.u~"" "'"~~
(l___)C <:.~ r + FF

l c.. S' J.. <.> .I" <?... - ,.

