Address Translation



Main Points

* Address Translation Concept

— How do we convert a virtual address to a physical
address?

* Flexible Address Translation
— Segmentation
— Paging
— Multilevel translation
e Efficient Address Translation
— Translation Lookaside Buffers
— Virtually and physically addressed caches
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Address Translation Goals

Memory protection

— |solate process to its only memory

— Prevent virus from re-writing machine instructions
Memory sharing

— Shared libraries, interprocess communication
Sparse addresses

— Dynamically allocated regions: heaps, stacks, mmap
Efficiency

— Reduce fragmentation and copying

— Runtime lookup cost and TLB hit rate

— Translation table size

Portability



Bonus Feature

 What if the kernel can regain control whenever a
program reads or writes a particular virtual
memory location?

 Examples:

— Copy on write

— Zero on reference

— Fill on demand

— Demand paging

— Memory mapped files
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Virtually Addressed Base and Bounds

* Pros?
— Simple
— Fast (2 registers, adder, comparator)
— Safe

— Can relocate in physical memory without changing
process

e Cons?

— Can’t keep program from accidentally overwriting its
own code

— Can’t share code/data with other processes
— Can’t grow stack/heap as needed



Process Regions or Segments

* Every process has logical regions or segments
— Contiguous region of process memory

* Code, data, heap, stack, dynamic library (code,
data), memory mapped files, ...

* Each with its own
— protection: read-only, read-write, execute-only
— sharing: code vs. data
— access pattern: code vs. mmap file



Segmentation

Segment is a contiguous region of virtual memory
Each process has a segment table (in hardware)

— Entry in table = segment

Segment can be located anywhere in physical
memory

— Each segment has: start, length, access permission

Processes can share segments

— Same start, length, same/different access permissions



Segmentation
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Segment start

length

2 bit segment # code  0x4000 0x700
12 bit offset data 0 0x500

heap - -
main: 0:240 store #108, r2 x: 108 abc\O
0:244 store pc+§, r31
0:248 jump 360 main: 4240 store #1108, r2
0:24c 4244 store pc+§, r31

4248 jump 360

strlen: 0:360 loadbyte (r2), r3 424c
0:420 jump (r31) strlen: 4360 loadbyte (r2),r3
x: 1:108 abc\0 4420 jump (r31)




Processor’s View
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Question

* With segmentation, what is saved/restored on
a process context switch?



Segmentation

* Pros?
— Can share code/data segments between processes
— Can protect code segment from being overwritten

* Cons? Complex memory management
— Need to find chunk of a particular size

— May need to rearrange memory to make room for
new segment or growing segment (e.g., sbrk)

— External fragmentation: wasted space between
chunks



Paged Translation

* Manage memory in fixed size units, or pages
* Finding a free page is easy

— Bitmap allocation: 0011111100000001100

— Each bit represents one physical page frame

* Each process has its own page table
— Stored in physical memory

— Hardware registers
e pointer to page table start
* page table length
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Paging Questions

* With paging, what is saved/restored on a
process context switch?

— Pointer to page table, size of page table

— Page table itself is in main memory
 What if page size is very small?
 What if page size is very large?

— Internal fragmentation: if we don’t need all of the
space inside a fixed size chunk



Paging and Sharing

 Can we use page tables to share memory
between processes?

e Set page tables to point to same page frame
* Need core map

— Array of information about each physical page frame
— Set of processes pointing to that page frame
— When reference count goes to zero, can reclaim!



Question

* How big a user stack should | allocate?

 What if some programs need a large stack and
others need a small one?



Expand Stack on Reference

* When program references memory beyond
end of stack
— Page fault into OS kernel

— Kernel allocates some additional memory
e How much?

— Remember to zero the memory to avoid
accidentally leaking information!

— Modify page table

— Resume process



UNIX fork seems inefficient

* Makes a complete copy of process
 Throw copy away on exec
* Do we need to make the copy?

— One solution: change the syscall interface!



Copy on Write

* Paging allows an efficient fork
— Copy page table of parent into child
— Mark all pages (in new/old page tables) as read-only
— Start child process; restart parent
— Trap into kernel on write (in child or parent)
— Copy page
— Mark both as writeable
— Resume execution



Question

e Can | start running a program before all of its
code is in memory?



Fill On Demand

Set all page table entries to invalid

When a page is referenced for first time, kernel
trap

Kernel brings page in from disk
Resume execution

Remaining pages can be transferred in the
packground while program is running




Beyond Paging: Sparse Address Spaces

* Might want many separate segments
— Per-processor heaps
— Per-thread stacks
— Memory-mapped files
— Dynamically linked libraries

 What if virtual address space is large?
— 32-bits, 4KB pages => 500K page table entries
— 64-bits => 4 quadrillion page table entries



Multi-level Translation

* Tree of translation tables
— Paged segmentation
— Multi-level page tables
— Multi-level paged segmentation

* All have pages as lowest level; why?



Multilevel Translation with
Pages at Lowest Level

Efficient memory allocation (vs. segments)
Efficient for sparse addresses (vs. 1 level paging)
Efficient disk transfers (fixed size units)

Easier to build translation lookaside buffers
Efficient reverse lookup (from physical -> virtual)
Variable granularity for protection/sharing

Except: see discussion of superpages



Paged Segmentation

Process memory is segmented

Segment table entry:

— Pointer to page table

— Page table length (# of pages in segment)
— Access permissions

Page table entry:
— Page frame
— Access permissions

Share memory or set access permissions at either
page or segment-level
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Question

 With paged segmentation, what must be
saved/restored across a process context
switch?



Multi-level or
hierarchical page tables

* Ex: 2-level page table Level 2
Tables
— Level 1 table: each PTE
points to a page table
— Level 2 table: each PTE Level 1
oints to a page Table ;
P Pag A

\

* Can share/protect/page
in/out at either level 1 or

level 2
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Question

* Write pseudo-code for translating a virtual
address to a physical address for a system

using 3-level paging, with 8 bits of address per
level



x86 Multilevel Paged Segmentation

* Global Descriptor Table (segment table)

 Each segment descriptor
— Pointer to (multilevel) page table

— Segment length

— Segment access permissions

e Context switch

— change global descriptor table register (GDTR),
pointer to global descriptor table

— Side effect: invalidates TLB



x86 Multilevel Paging

Omit sub-tree if no valid addresses
— Good for sparse address space

4KB pages

Eac
32-
64-

n level of page table fits in one page
oit: two level page table (per segment)

oit: four level page table (per segment)



X86-32 Paging
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Page directory entries (x86 32 bit)

Empty

4MB page

Page table

lgnored
Bits 31:22 of address PIPlUR
of 4MB page frame 0 Ign CW/|/
i DI TISIW
Pl Pl U R
Bits 31:12 of address of page table lgn clW/|/
DI TISIW




Page table entries (x86 32 bit)
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Small page translation

CR3 register Address of page directory SBZ
Virtual address % PDE index PTE index Offset
Address of PDE Address of page directory PDE index |00/«
\\
~~ Note: addresses

PDE Page table base address Access control |1 / in physical memory!
Address of PTE Page table base address PTE index |0 0’/

PTE Small page base address Access control |1

O $

Zzzlileci }ZD Small page base address Offset




Page table for small pages

Base address
R

i 1024 entries 4kB page
4kB

?

! ! Page table

1024 entries
4kB !

Translates VA[21:12]

4kB page

1

Page directory

VA[11:0] = offset in page

Translates VA[31:22]

Page table



Multilevel Translation

* Pros:
— Allocate/fill only page table entries that are in use
— Simple memory allocation

— Share at segment or page level

* Cons:
— Space overhead: one pointer per virtual page
— Multiple lookups per memory reference



Page Translation in the OS

 OS’s need to keep their own data structures
— List of memory objects (segments)
— Virtual page -> physical page frame
— Physical page frame -> set of virtual pages
— Keep track of copy on write, load on demand, ...

* Why not just use the hardware page tables?



Kernel Page Translation

* Kernel maintains its own page translation data
structures

— Portable, flexible

— Copy changes down into hardware page tables
 Example: Inverted page table

— Hash from virtual page -> physical page

— Space proportional to # of physical pages
* Example: virtual/shadow page table

— Linux kernel tables mirror x86 structure, even on
ARM



Efficient Address Translation

* Translation lookaside buffer (TLB)

— Cache of recent virtual page -> physical page
translations

— If cache hit, use translation

— If cache miss, walk multi-level page table

e Cost of translation =

Cost of TLB lookup +
Prob(TLB miss) * cost of page table lookup



TLB and Page Table Translation
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Question

 What happens on a context switch?
— Reuse TLB?
— Discard TLB? (xk resets TLB)

e Solution: Tagged TLB
— Each TLB entry has process ID
— TLB hit only if process ID matches current process
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MIPS Address Translation

e Software-Loaded Translation lookaside buffer (TLB)

— Cache of virtual page -> physical page translations

— If TLB hit, physical address

— |f TLB miss, trap to kernel

— Kernel fills TLB with translation and resumes execution

* Kernel can implement any page translation
— Page tables
— Multi-level page tables
— Inverted page tables



Question

e What is the cost of a TLB miss on a modern
processor?

— Cost of multi-level page table walk

— MIPS: plus cost of trap handler entry/exit



Hardware Design Principle

The bigger the memory, the slower the memory



Intel i7

' IntegratediMembry Controller-13iCh DDR3

 Core 0. Core Core 2 . Core3

Shared L3 Cache



Memory Hierarchy

Cache Hit Cost Size
1st level cache/first level TLB 1ns 64 KB
2nd level cache/second level TLB 4ns 256KB
3rd level cache 12ns 2MB
Memory (DRAM) 100ns 10GB
Data center memory (DRAM) 100us 100TB
Local non-volatile memory 100us 100GB
Local disk 10ms 1TB
Data center disk i0ms 100PB
Remote data center disk 200 ms 1 XB

i7 has 8MB as shared 39 |evel cache; 2" |evel cache is per-core



Question

e What is the cost of a first level TLB miss?
— Second level TLB lookup

e What is the cost of a second level TLB miss?
— 64 bit x86: 4-level page table walk

* How expensive is a 4-level page table walk?



Virtually Addressed vs. Physically
Addressed Caches

First level cache has at most a few cycles
— Delays every instruction fetch and data reference

Lookup TLB to get physical address, then
lookup physical address in the cache?

— Too slow!
Instead, lookup virtual address in cache
In parallel, lookup TLB in case of a cache miss
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Question

 With a virtual cache, what do we need to do
on a context switch?



Processor

Physically Addressed Cache

Virtual
Address

Virtual
Cache

Hit

Data

Virtual
Address
M'SS .............. >

Offset

TLB

Hit

Virtual
Address
MISS .............. >

Physical
Address

Physical
Cache

Hit

Exception

MISS .............. >
Physical
Address

Physical
Memory




TLB Size (Intel Kaby Lake, 2017)

First level TLB

— Instruction: 128 entries
— Data: 64 entries

Second level TLB
— 1536 entries

Modern server can have 10 TB (!) of DRAM
— 10-20% of server CPU time spent in TLB misses



When Do TLBs Work/Not Work?

Video Frame Buffer
Page#

Video Frame Buffer: .
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Superpages

* On x86 and ARM, TLB entry can be
— A page
— A superpage: a set of contiguous, aligned pages
e x86: superpage is set of pages in one page table
— One page: 4KB
— One page table: 2MB
— One page table of page tables: 1GB

— One page table of page tables of page tables: 0.5TB
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When Do TLBs Work/Not Work, part 2

 What happens when the OS changes the
permissions on a page?

— For demand paging, copy on write, zero on
reference, ...

* TLB may contain old translation
— OS must ask hardware to purge TLB entry

* On a multicore: TLB shootdown
— OS must ask each CPU to purge TLB entry



Processor 1 TLB

Processor 2 TLB

Processor 3 TLB

TLB Shootdown

Process
ID VirtualPage PageFrame Access
0 0x0053 0x0003 R/W
1 0x40FF 0x0012 R/W
0 0x0053 0x0003 R/W
0 0x0001 0x0005 Read
1 0x40FF 0x0012 R/W
0 0x0001 0x0005 Read




Virtual Cache Shootdown

* When permissions change for a page, we must
shoot down the TLB entry on every CPU

e What about the contents of the virtual cache?
* Lazy shootdown of the virtual cache:

— Lookup virtually addressed cache and TLB in parallel
— Use the TLB to verify virtual address is still valid!
— Evict entry from cache if not



Virtual Cache Aliases

e Alias: two (or more) virtual cache entries that
refer to the same physical memory

— A consequence of a tagged virtually addressed cache!
— A write to one copy needs to update all copies

e Solution:

— Virtual cache keeps both virtual and physical address
for each entry

— Lookup virtually addressed cache and TLB in parallel

— Check if physical address from TLB matches any other
entries, and update/invalidate those copies



X86 caches

64 byte line size
Physically indexed

Physically tagged
Write buffer



Multicore and Hyperthreading

Modern CPU has several functional units

— Instruction decode

— Arithmetic/branch

— Floating point

— Instruction/data cache

— TLB

Multicore: replicate functional units (i7: 4)

— Share second/third level cache, second level TLB

Hyperthreading: logical processors that share
functional units (i7: 2)

— Better functional unit utilization during memory stalls

No difference from the OS/programmer perspective
— Except for performance, affinity, ...



Address Translation Uses

Process isolation

— Keep a process from touching anyone else’s memory, or
the kernel’s

Efficient interprocess communication

— Shared regions of memory between processes

Shared code segments

— E.g., common libraries used by many different programs
Program initialization

— Start running a program before it is entirely in memory

Dynamic memory allocation
— Allocate and initialize stack/heap pages on demand



Address Translation (more)

Cache management

— Page coloring

Program debugging

— Data breakpoints when address is accessed
Zero-copy |/O

— Directly from I/O device into/out of user memory
Memory mapped files

— Access file data using load/store instructions
Demand-paged virtual memory

— lllusion of near-infinite memory, backed by disk or
memory on other machines



Address Translation (even more)

Checkpointing/restart

— Transparently save a copy of a process, without stopping
the program while the save happens

Persistent data structures

— Implement data structures that can survive system
reboots

Process migration

— Transparently move processes between machines
Information flow control

— Track what data is being shared externally

Distributed shared memory
— lllusion of memory that is shared between machines



