Address Translation

Main Points

* Address Translation Concept

— How do we convert a virtual address to a physical
address?

* Flexible Address Translation
— Segmentation
— Paging
— Multilevel translation
e Efficient Address Translation
— Translation Lookaside Buffers
— Virtually and physically addressed caches

Address Translation Concept

Virtual
Address Rai
ProCessor [« wwwweeeeeeeess >| Translation [Invalid - , nalse
Exception
? Valid
: Physical
S sessssssesssssssess >
' Memor
Data Physical y
: Address

Address Translation Goals

Memory protection

— |solate process to its only memory

— Prevent virus from re-writing machine instructions
Memory sharing

— Shared libraries, interprocess communication
Sparse addresses

— Dynamically allocated regions: heaps, stacks, mmap
Efficiency

— Reduce fragmentation and copying

— Runtime lookup cost and TLB hit rate

— Translation table size

Portability

Bonus Feature

 What if the kernel can regain control whenever a
program reads or writes a particular virtual
memory location?

 Examples:

— Copy on write

— Zero on reference

— Fill on demand

— Demand paging

— Memory mapped files

Virtually Addressed Base and Bounds

Processor’s View Implementation Physical
Memory
Virtual Base B
. ase
Vitual ~_Memory Virtual Physical
Address Address v Address
Processor : Processor e > @ .. >
teeeeeens > H
Base+
BOL:md Bound
: Raise
..................... > cesseeed
@ Exception

Virtually Addressed Base and Bounds

* Pros?
— Simple
— Fast (2 registers, adder, comparator)
— Safe

— Can relocate in physical memory without changing
process

e Cons?

— Can’t keep program from accidentally overwriting its
own code

— Can’t share code/data with other processes
— Can’t grow stack/heap as needed

Process Regions or Segments

* Every process has logical regions or segments
— Contiguous region of process memory

* Code, data, heap, stack, dynamic library (code,
data), memory mapped files, ...

* Each with its own
— protection: read-only, read-write, execute-only
— sharing: code vs. data
— access pattern: code vs. mmap file

Segmentation

Segment is a contiguous region of virtual memory
Each process has a segment table (in hardware)

— Entry in table = segment

Segment can be located anywhere in physical
memory

— Each segment has: start, length, access permission

Processes can share segments

— Same start, length, same/different access permissions

Segmentation

Processor’s View Implementation Physical
Memory
Virtual Base 3
Memory Stack
_ Processor Base+
Virtual Bound 3
Address | Code : Virtual Segment Table
Processor - : : Address Base Bound Access
: : Base 0
--------- > »| Segment| Offset Read
: : Code
Data e, TS > . . R/W
: : : Base+
R/W Bound 0
R/W
Heap
Base 1
...... >
§ - § Physical Add é Data B
: : ysica ress : ase+
Stack Beasseassanvesnieasand > @ -. Bound 1
: s Raise
LTRSS Y (>-) EERPRRTD >
)(:> Exception
Base 2
Heap
Base+

Bound 2

Segment start

length

2 bit segment # code 0x4000 0x700
12 bit offset data 0 0x500

heap - -
main: 0:240 store #108, r2 x: 108 abc\O
0:244 store pc+§, r31
0:248 jump 360 main: 4240 store #1108, r2
0:24c 4244 store pc+§, r31

4248 jump 360

strlen: 0:360 loadbyte (r2), r3 424c
0:420 jump (r31) strlen: 4360 loadbyte (r2),r3
x: 1:108 abc\0 4420 jump (r31)

Processor’s View

Process 1's View

Processor

Process 2's View

Processor

Virtual
Address
0x0500

Virtual
Address
0x0500

Virtual
Memory

Code

Processor

Data

Heap

Stack

Implementation

Code

Processor

Data

Heap

Stack

Segment Table
Seg. Offset Base Bound Access
0 500 Code : Read
Virtual Data i
Address Heap R/W
Stack : R/W
S , @ Physical Address
......................... ,(:)””””””””“”””“””“””"””u”””.
: ? Segment Table
Seg. Oﬁseté Ba;e Bound Access
0| 500 Code | Read
Virtual Data RAY
Address Heap R/W
Stack R/W

Physical
Memory

P2’s
Data

P1's
Heap

P1's
Stack

P1's
Data

P2's
Heap

P1’s+
Code

P2’s
Stack

Question

* With segmentation, what is saved/restored on
a process context switch?

Segmentation

* Pros?
— Can share code/data segments between processes
— Can protect code segment from being overwritten

* Cons? Complex memory management
— Need to find chunk of a particular size

— May need to rearrange memory to make room for
new segment or growing segment (e.g., sbrk)

— External fragmentation: wasted space between
chunks

Paged Translation

* Manage memory in fixed size units, or pages
* Finding a free page is easy

— Bitmap allocation: 0011111100000001100

— Each bit represents one physical page frame

* Each process has its own page table
— Stored in physical memory

— Hardware registers
e pointer to page table start
* page table length

Processor’s View

VPage 0[
VPage 1[

VPage N[

Code

Data

Heap

Stack

Physical

Memory

E > Codd)

.......................................

e > Heap2

»>| Data0

»|Heapl

>|Codel

>|Heap0

>| Datal

>|Stack1

»|StackO

Frame O

Frame M

Processor

...............

...................

Virtual
Address

.. >
Virtual et eeeeeeneencantanaens
Address
)_
e s >

Physical

Memory
Physical Erame ?
Address rame
........ >| Frame Offset
gPage Table . >
Fretfme Access
........... >
: Physical
v Address
Frame M

Process View

L 6 MmO

r X - —

Physical Memory

Page Table

rx - —

OO W®W>» | T T m

Paging Questions

* With paging, what is saved/restored on a
process context switch?

— Pointer to page table, size of page table

— Page table itself is in main memory
 What if page size is very small?
 What if page size is very large?

— Internal fragmentation: if we don’t need all of the
space inside a fixed size chunk

Paging and Sharing

 Can we use page tables to share memory
between processes?

e Set page tables to point to same page frame
* Need core map

— Array of information about each physical page frame
— Set of processes pointing to that page frame
— When reference count goes to zero, can reclaim!

Question

* How big a user stack should | allocate?

 What if some programs need a large stack and
others need a small one?

Expand Stack on Reference

* When program references memory beyond
end of stack
— Page fault into OS kernel

— Kernel allocates some additional memory
e How much?

— Remember to zero the memory to avoid
accidentally leaking information!

— Modify page table

— Resume process

UNIX fork seems inefficient

* Makes a complete copy of process
 Throw copy away on exec
* Do we need to make the copy?

— One solution: change the syscall interface!

Copy on Write

* Paging allows an efficient fork
— Copy page table of parent into child
— Mark all pages (in new/old page tables) as read-only
— Start child process; restart parent
— Trap into kernel on write (in child or parent)
— Copy page
— Mark both as writeable
— Resume execution

Question

e Can | start running a program before all of its
code is in memory?

Fill On Demand

Set all page table entries to invalid

When a page is referenced for first time, kernel
trap

Kernel brings page in from disk
Resume execution

Remaining pages can be transferred in the
packground while program is running

Beyond Paging: Sparse Address Spaces

* Might want many separate segments
— Per-processor heaps
— Per-thread stacks
— Memory-mapped files
— Dynamically linked libraries

 What if virtual address space is large?
— 32-bits, 4KB pages => 500K page table entries
— 64-bits => 4 quadrillion page table entries

Multi-level Translation

* Tree of translation tables
— Paged segmentation
— Multi-level page tables
— Multi-level paged segmentation

* All have pages as lowest level; why?

Multilevel Translation with
Pages at Lowest Level

Efficient memory allocation (vs. segments)
Efficient for sparse addresses (vs. 1 level paging)
Efficient disk transfers (fixed size units)

Easier to build translation lookaside buffers
Efficient reverse lookup (from physical -> virtual)
Variable granularity for protection/sharing

Except: see discussion of superpages

Paged Segmentation

Process memory is segmented

Segment table entry:

— Pointer to page table

— Page table length (# of pages in segment)
— Access permissions

Page table entry:
— Page frame
— Access permissions

Share memory or set access permissions at either
page or segment-level

Implementation Physical
Memory
Processor
Virtual
: Address
Feeeese e, > @ -------- > Exception
Segment Table
: Page Table Size Access
............ > Read :
PR R R R R RN R RSN R : R/W
E E E. >3
R/W :
Page Table R/W
{ Frame Access :
: Read Physical
Lo : Read Address
ereeeenberiii s Frame Offset |- 3

Question

 With paged segmentation, what must be
saved/restored across a process context
switch?

Multi-level or
hierarchical page tables

* Ex: 2-level page table Level 2
Tables
— Level 1 table: each PTE
points to a page table
— Level 2 table: each PTE Level 1
oints to a page Table ;
P Pag A

\

* Can share/protect/page
in/out at either level 1 or

level 2

Implementation Physical
Memory
Processor
Virtual
Address
-3 Index 1 Index 2 Index 3 Offset
: : : Physical :
Level 1 Address ;
Frame Offset [->
................................... > ~
Level 2
e
... >
Level 3

...

Question

* Write pseudo-code for translating a virtual
address to a physical address for a system

using 3-level paging, with 8 bits of address per
level

x86 Multilevel Paged Segmentation

* Global Descriptor Table (segment table)

 Each segment descriptor
— Pointer to (multilevel) page table

— Segment length

— Segment access permissions

e Context switch

— change global descriptor table register (GDTR),
pointer to global descriptor table

— Side effect: invalidates TLB

x86 Multilevel Paging

Omit sub-tree if no valid addresses
— Good for sparse address space

4KB pages

Eac
32-
64-

n level of page table fits in one page
oit: two level page table (per segment)

oit: four level page table (per segment)

X86-32 Paging

20
PPN

Virtual address

10 10 12
VPN3 VPN4 VPO
Page Page
Directory Table
> PDE > PTE]
CR3—

v

12

PPO

Physical address

16
Sign

X86-64 Paging

Virtual address

9 9 9 9 12
VPN1 VPN2 VPN3 VPN4 VPO
Page
Directory
Page Map Pointer Page Page
Level 4 Table Directory Table
> PMALE 'I > PDPE - PDE - PTE]

CR3—

36
PPN

12

PPO

Physical address

Page directory entries (x86 32 bit)

Empty

4MB page

Page table

lgnored
Bits 31:22 of address PIPlUR
of 4MB page frame 0 Ign CW/|/
i DI TISIW
Pl Pl U R
Bits 31:12 of address of page table lgn clW/|/
DI TISIW

Page table entries (x86 32 bit)

Empty

4KB page

lgnored

Bits 31:12 of address of page frame

O T©

< O
S~
S~

Small page translation

CR3 register Address of page directory SBZ
Virtual address % PDE index PTE index Offset
Address of PDE Address of page directory PDE index |00/«
\\
~~ Note: addresses

PDE Page table base address Access control |1 / in physical memory!
Address of PTE Page table base address PTE index |0 0’/

PTE Small page base address Access control |1

O $

Zzzlileci }ZD Small page base address Offset

Page table for small pages

Base address
R

i 1024 entries 4kB page
4kB

?

! ! Page table

1024 entries
4kB !

Translates VA[21:12]

4kB page

1

Page directory

VA[11:0] = offset in page

Translates VA[31:22]

Page table

Multilevel Translation

* Pros:
— Allocate/fill only page table entries that are in use
— Simple memory allocation

— Share at segment or page level

* Cons:
— Space overhead: one pointer per virtual page
— Multiple lookups per memory reference

Page Translation in the OS

 OS’s need to keep their own data structures
— List of memory objects (segments)
— Virtual page -> physical page frame
— Physical page frame -> set of virtual pages
— Keep track of copy on write, load on demand, ...

* Why not just use the hardware page tables?

Kernel Page Translation

* Kernel maintains its own page translation data
structures

— Portable, flexible

— Copy changes down into hardware page tables
 Example: Inverted page table

— Hash from virtual page -> physical page

— Space proportional to # of physical pages
* Example: virtual/shadow page table

— Linux kernel tables mirror x86 structure, even on
ARM

Efficient Address Translation

* Translation lookaside buffer (TLB)

— Cache of recent virtual page -> physical page
translations

— If cache hit, use translation

— If cache miss, walk multi-level page table

e Cost of translation =

Cost of TLB lookup +
Prob(TLB miss) * cost of page table lookup

TLB and Page Table Translation

Virtual Virtual
Address Address i
Processor greseeeeees > TLB M|SS ,,,,,,,,,,,,,, > Page |nval|d > aise .
: Exception

Table

: Hit

Valid

Frame Frame

Offset é’_) Physical

. L A > (G o) I IS >3

: Memor

Physical y

Address

Data

Virtual

Address

Page#

Offset

..........

TLB Lookup

..

.....

Translation Lookaside Buffer (TLB)

Virtual Page
Page Frame

Access Physical :

.
.
.
e coedecencanns

Address

v

Offset

Physical
Memory

.
.
.
.
....)@...
.
.

Page Table
)@ ” Lookup

Question

 What happens on a context switch?
— Reuse TLB?
— Discard TLB? (xk resets TLB)

e Solution: Tagged TLB
— Each TLB entry has process ID
— TLB hit only if process ID matches current process

Implementation Physical

Memory
Processor p
age
Virtual Fre?me
Address
e >| Page# Offset
: Translation Lookaside Buffer (TLB)
Process ID - rrreeememreeeeeenss > E
: Process ID Page Frame Access Physical :
)@ Address v
Matching Entry)@ ... > Frame Offset

Page Table
)@ ” Lookup

MIPS Address Translation

e Software-Loaded Translation lookaside buffer (TLB)

— Cache of virtual page -> physical page translations

— If TLB hit, physical address

— |f TLB miss, trap to kernel

— Kernel fills TLB with translation and resumes execution

* Kernel can implement any page translation
— Page tables
— Multi-level page tables
— Inverted page tables

Question

e What is the cost of a TLB miss on a modern
processor?

— Cost of multi-level page table walk

— MIPS: plus cost of trap handler entry/exit

Hardware Design Principle

The bigger the memory, the slower the memory

Intel i7

' IntegratediMembry Controller-13iCh DDR3

 Core 0. Core Core 2 . Core3

Shared L3 Cache

Memory Hierarchy

Cache Hit Cost Size
1st level cache/first level TLB 1ns 64 KB
2nd level cache/second level TLB 4ns 256KB
3rd level cache 12ns 2MB
Memory (DRAM) 100ns 10GB
Data center memory (DRAM) 100us 100TB
Local non-volatile memory 100us 100GB
Local disk 10ms 1TB
Data center disk i0ms 100PB
Remote data center disk 200 ms 1 XB

i7 has 8MB as shared 39 |evel cache; 2" |evel cache is per-core

Question

e What is the cost of a first level TLB miss?
— Second level TLB lookup

e What is the cost of a second level TLB miss?
— 64 bit x86: 4-level page table walk

* How expensive is a 4-level page table walk?

Virtually Addressed vs. Physically
Addressed Caches

First level cache has at most a few cycles
— Delays every instruction fetch and data reference

Lookup TLB to get physical address, then
lookup physical address in the cache?

— Too slow!
Instead, lookup virtual address in cache
In parallel, lookup TLB in case of a cache miss

Processor

Virtually Addressed Caches

Virtual
Address

........... gecssccccns

Virtual
Cache

Hit

Data

Virtual
Address
M|SS >

TLB

Hit

Virtual
Address
M|SS >

..

Physical
Address

Invalid ----++----

Physical
Memory

...

R Raise
Exception

Question

 With a virtual cache, what do we need to do
on a context switch?

Processor

Physically Addressed Cache

Virtual
Address

Virtual
Cache

Hit

Data

Virtual
Address
M'SS >

Offset

TLB

Hit

Virtual
Address
MISS >

Physical
Address

Physical
Cache

Hit

Exception

MISS >
Physical
Address

Physical
Memory

TLB Size (Intel Kaby Lake, 2017)

First level TLB

— Instruction: 128 entries
— Data: 64 entries

Second level TLB
— 1536 entries

Modern server can have 10 TB (!) of DRAM
— 10-20% of server CPU time spent in TLB misses

When Do TLBs Work/Not Work?

Video Frame Buffer
Page#

Video Frame Buffer: .

32 bits x 1K x 1K =

1
2
3

4MB

2017 laptop: 3K x 2K =
24MB

4K display: 4K x 3K = 1021

1022

48MB 1023

Superpages

* On x86 and ARM, TLB entry can be
— A page
— A superpage: a set of contiguous, aligned pages
e x86: superpage is set of pages in one page table
— One page: 4KB
— One page table: 2MB
— One page table of page tables: 1GB

— One page table of page tables of page tables: 0.5TB

Virtual
Address
Page# Offset
SP Offset

..................

Matching Entry

Matching
Superpage

.o

SN S— _ Page Table

Physical
Memory

Superpages

..

..

Translation Lookaside Buffer (TLB)

Superpage Superframe
(SP) or (SF) or

Page# Frame Access Physical :
g Address
3 v

P PO O S ..g. > Frame Offset

..............................

Lookup SF Offset s

When Do TLBs Work/Not Work, part 2

 What happens when the OS changes the
permissions on a page?

— For demand paging, copy on write, zero on
reference, ...

* TLB may contain old translation
— OS must ask hardware to purge TLB entry

* On a multicore: TLB shootdown
— OS must ask each CPU to purge TLB entry

Processor 1 TLB

Processor 2 TLB

Processor 3 TLB

TLB Shootdown

Process
ID VirtualPage PageFrame Access
0 0x0053 0x0003 R/W
1 0x40FF 0x0012 R/W
0 0x0053 0x0003 R/W
0 0x0001 0x0005 Read
1 0x40FF 0x0012 R/W
0 0x0001 0x0005 Read

Virtual Cache Shootdown

* When permissions change for a page, we must
shoot down the TLB entry on every CPU

e What about the contents of the virtual cache?
* Lazy shootdown of the virtual cache:

— Lookup virtually addressed cache and TLB in parallel
— Use the TLB to verify virtual address is still valid!
— Evict entry from cache if not

Virtual Cache Aliases

e Alias: two (or more) virtual cache entries that
refer to the same physical memory

— A consequence of a tagged virtually addressed cache!
— A write to one copy needs to update all copies

e Solution:

— Virtual cache keeps both virtual and physical address
for each entry

— Lookup virtually addressed cache and TLB in parallel

— Check if physical address from TLB matches any other
entries, and update/invalidate those copies

X86 caches

64 byte line size
Physically indexed

Physically tagged
Write buffer

Multicore and Hyperthreading

Modern CPU has several functional units

— Instruction decode

— Arithmetic/branch

— Floating point

— Instruction/data cache

— TLB

Multicore: replicate functional units (i7: 4)

— Share second/third level cache, second level TLB

Hyperthreading: logical processors that share
functional units (i7: 2)

— Better functional unit utilization during memory stalls

No difference from the OS/programmer perspective
— Except for performance, affinity, ...

Address Translation Uses

Process isolation

— Keep a process from touching anyone else’s memory, or
the kernel’s

Efficient interprocess communication

— Shared regions of memory between processes

Shared code segments

— E.g., common libraries used by many different programs
Program initialization

— Start running a program before it is entirely in memory

Dynamic memory allocation
— Allocate and initialize stack/heap pages on demand

Address Translation (more)

Cache management

— Page coloring

Program debugging

— Data breakpoints when address is accessed
Zero-copy |/O

— Directly from I/O device into/out of user memory
Memory mapped files

— Access file data using load/store instructions
Demand-paged virtual memory

— lllusion of near-infinite memory, backed by disk or
memory on other machines

Address Translation (even more)

Checkpointing/restart

— Transparently save a copy of a process, without stopping
the program while the save happens

Persistent data structures

— Implement data structures that can survive system
reboots

Process migration

— Transparently move processes between machines
Information flow control

— Track what data is being shared externally

Distributed shared memory
— lllusion of memory that is shared between machines

