Synchronization

Synchronization Motivation

When threads concurrently read/write shared
memory, program behavior is undefined

— Two threads write to the same variable; which one
should win?

Thread schedule is non-deterministic
— Behavior changes when re-run program

Compiler/hardware instruction reordering
Multi-word operations are not atomic

Question: Can this panic?

Thread 1 Thread 2

p = someComputation(); while (Iplnitialized)
pinitialized = true; ;

g = someFunction(p);

if (g != someFunction(p))

panic

Why Reordering?

* Why do compilers reorder instructions?

— Efficient code generation requires analyzing control/
data dependency

— |f variables can spontaneously change, most compiler
optimizations become impossible

* Why do CPUs reorder instructions?

— Write buffering: allow next instruction to execute
while write is being completed

Fix: memory barrier
— Instruction to compiler/CPU
— All ops before barrier complete before barrier returns
— No op after barrier starts until barrier returns

Too Much Milk Example

12:30
12:35
12:40
12:45
12:50
12:55

1:00

Person A Person B
Look in fridge. Out of milk.
Leave for store.
Arrive at store. Look in fridge. Out of milk.
Buy milk. Leave for store.
Arrive home, put milk away. Arrive at store.
Buy milk.

Arrive home, put milk away.
Oh no!

Definitions
Race condition: output of a concurrent program depends on
the order of operations between threads
Mutual exclusion: only one thread does a particular thing at a
time
— Critical section: piece of code that only one thread can
execute at once
Lock: prevent someone from doing something

— Lock before entering critical section, before accessing
shared data

— Unlock when leaving, after done accessing shared data
— Wait if locked (all synchronization involves waiting!)

Too Much Milk, Try

* Correctness property
— Someone buys if needed (liveness)
— At most one person buys (safety)

 Try #1: leave a note
if (Inote)
if (!milk) {
leave note
buy milk
remove note

Too Much Milk, Try #2

Thread A Thread B
leave note A leave note B
if (Inote B) { if (InoteA) {
if (!milk) if (!milk)
buy milk buy milk
! !

remove note A remove note B

Too Much Milk, Try #3

Thread A Thread B

leave note A leave note B

while (note B) // X if (InoteA){ //Y
do nothing; if (!milk)

if (!milk) buy milk
buy milk; }

remove note A remove note B

Can guarantee at X and Y that either:
(i) Safe for me to buy
(ii) Other will buy, ok to quit

Lessons

e Solution is complicated

— “obvious” code often has bugs

 Modern compilers/architectures reorder
Instructions

— Making reasoning even more difficult

* Generalizing to many threads/processors

— Even more complex: see Peterson’s algorithm

Roadmap

Concurrent Applications

Semaphores Locks Condition Variables

Interrupt Disable Atomic Read/Modify/Write Instructions

Multiple Processors Hardware Interrupts

Locks

* Lock::acquire
— wait until lock is free, then take it

e Lock::release

— release lock, waking up anyone waiting for it

1. At most one lock holder at a time (safety)

2. If no one holding, acquire gets

3. If all lock holders finish and no hig

waiters, waiter eventually gets

OC

K (progress)
ner priority

OC

K (progress)

Question: Why only Acquire/Release?

* Suppose we add a method to a lock, to ask if
the lock is free. Suppose it returns true. Is
the lock:

— Free?
— Busy?
— Don’t know?

Too Much Milk, #4

Locks allow concurrent code to be much simpler:
lock.acquire();
if (!milk)
buy milk
lock.release();

Lock Example: Malloc/Free

char *malloc (n) {
heaplock.acquire();
p = allocate memory

heaplock.release();
return p;

void free(char *p) {
heaplock.acquire();
put p back on free list
heaplock.release();

Rules for Using Locks

Lock is initially free

Always acquire before accessing shared data
structure

— Beginning of procedure!
Always release after finishing with shared data
— End of procedure!

— Only the lock holder can release

— DO NOT throw lock for someone else to release
Never access shared data without lock

— Danger!

Double Checked Locking

if (p == NULL) { newP() {
lock.acquire(); tmp = malloc(sizeof(p));
if (p ==NULL) { tmp->fieldl = ...
p = newP(); tmp->field2 = ...
} return tmp;
lock.release(); }
}

use p->fieldl

Single Checked Locking

lock.acquire(); newP() {
if (p == NULL) { tmp = malloc(sizeof(p));
p = newP(); tmp->fieldl = ...
} tmp->field2 = ...
lock.release(); return tmp;

use p->fieldl }

Example: Bounded Buffer

tryget() { tryput(item) {
lock.acquire(); lock.acquire();
item = NULL; success = FALSE;
if (front < tail) { if ((tail — front) < MAX) {
item = buf[front % MAX]; buf[tail % MAX] = item;
front++; tail++;
} success = TRUE;
lock.release(); }
return item; lock.release();
} return success;
}

Initially: front = tail = 0; lock = FREE; MAX is buffer capacity

Question

 |f tryget returns NULL, do we know the buffer
is empty?

* |f we poll tryget in a loop, what happens to a
thread calling tryput?

Condition Variables

Waiting inside a critical section
— Called only when holding a lock

Wait: atomically release lock and relinquish
processor

— Reacquire the lock when wakened
Signal: wake up a waiter, if any
Broadcast: wake up all waiters, if any

Condition Variable Design Pattern

methodThatWaits() { methodThatSignals() {
lock.acquire(); lock.acquire();
// Read/write shared state // Read/write shared state
while (!testSharedState()) { // If testSharedState is now true

cv.wait(&lock); cv.signal(&lock);

}
// Read/write shared state // Read/write shared state
lock.release(); lock.release();

} }

Example: Bounded Buffer

get() { put(item) {
lock.acquire(); lock.acquire();
while (front == tail) { while ((tail — front) == MAX) {

empty.wait(&lock); full.wait(&lock);

} }
item = buf[front % MAX]; buf[tail % MAX] = item;
front++; tail++;
full.signal(&lock); empty.signal(&lock);
lock.release(); lock.release();
return item; }

}

Initially: front = tail = 0; MAX is buffer capacity
empty/full are condition variables

Pre/Post Conditions

What is state of the bounded buffer at lock
acquire?

— front <= tail

— tail — front <= MAX

These are also true on return from wait
And at lock release
Allows for proof of correctness

Question

Does the kth call to get return the kth item put?

Hint: wait must re-acquire the lock after the
signaller releases it.

Pre/Post Conditions

methodThatWaits() { methodThatSignals() {
lock.acquire(); lock.acquire();
// Pre-condition: State is consistent // Pre-condition: State is consistent
// Read/write shared state // Read/write shared state
while (!testSharedState()) { // If testSharedState is now true
cv.wait(&lock); cv.signal(&lock);
}
// WARNING: shared state may // NO WARNING: signal keeps lock
// have changed! But
// testSharedState is TRUE // Read/write shared state
// and pre-condition is true lock.release();
}

// Read/write shared state
lock.release();

}

Rules for Condition Variables

 ALWAYS hold lock when calling wait, signal,
broadcast

— Condition variable is sync FOR shared state

— ALWAYS hold lock when accessing shared state
* Condition variable is memoryless

— If signal when no one is waiting, no op

— |f wait before signal, waiter wakes up

* Wait atomically releases lock
— What if wait, then release?
— What if release, then wait?

Rules for Condition Variables, cont’d

* When a thread is woken up from wait, it may not
run immediately

— Signal/broadcast put thread on ready list
— When lock is released, anyone might acquire it

 Wait MUST be in a loop
while (needToWait()) {
condition.Wait(&lock);

}
e Simplifies implementation
— Of condition variables and locks
— Of code that uses condition variables and locks

Java Manual

When waiting upon a Condition, a “spurious
wakeup” is permitted to occur, in general, as a
concession to the underlying platform
semantics. This has little practical impact on
most application programs as a Condition
should always be waited upon in a loop,
testing the state predicate that is being waited
for.

Structured Synchronization

|dentify objects or data structures that can be accessed by
multiple threads concurrently

— In OS/161 kernel, everything!

Add locks to object/module
— Grab lock on start to every method/procedure
— Release lock on finish

If need to wait
— while(needToWait()) { condition.Wait(lock); }
— Do not assume when you wake up, signaller just ran

If do something that might wake someone up
— Signal or Broadcast

Always leave shared state variables in a consistent state
— When lock is released, or when waiting

Remember the rules

Use consistent structure
Always use locks and condition variables

Always acquire lock at beginning of
procedure, release at end

Always hold lock when using a condition
variable

Always wait in while loop
Never spin in sleep()

Implementing Synchronization

Concurrent Applications

Semaphores Locks Condition Variables

Interrupt Disable Atomic Read/Modify/Write Instructions

Multiple Processors Hardware Interrupts

Implementing Synchronization

Take 1: using memory load/store
— See too much milk solution/Peterson’s algorithm

Take 2:
Lock::acquire()
{ oldIPL = setIinterrupts(OFF); }
Lock::release()
{ setInterrupts(oldIPL); }

Lock Implementation, Uniprocessor

Lock::acquire() { Lock::release() {

oldIPL = setinterrupts(OFF); oldIPL = setinterrupts(OFF);

if (value == BUSY) { if (!waiting.Empty()) {
waiting.add(myTCB); next = waiting.remove();
myTCB->state = WAITING; next->state = READY;
next = readyList.remove(); readyList.add(next);
switch(myTCB, next); } else {
myTCB->state = RUNNING; value = FREE;

} else { }
value = BUSY: setinterrupts(oldIPL);

} }

setinterrupts(oldIPL);
}

What thread is currently running?

 Thread scheduler needs to know the TCB of the
currently running thread

— To suspend and switch to a new thread
— To check if the current thread holds a lock before
acquiring or releasing it
* On a uniprocessor, easy: just use a global
variable
— Change the value in switch

* On a multiprocessor?

What thread is currently running?
(Multiprocessor Version)

 Compiler dedicates a register
— 0S/161 on MIPS: s7 points to TCB running on this CPU

 Hardware register holds processor number

— x86 RDTSCP: read timestamp counter and processor ID

— OS keeps an array, indexed by processor ID, listing
current thread on each CPU

* Fixed-size thread stacks: put a pointer to the TCB
at the bottom of its stack

— Find it by masking the current stack pointer

Mutual Exclusion Support on a
Multiprocessor

* Read-modify-write instructions

— Atomically read a value from memory, operate on it,
and then write it back to memory

— Intervening instructions prevented in hardware

e Examples
— Test and set
— Intel: xchgb, lock prefix
— Compare and swap

* Any of these can be used for implementing locks
and condition variables!

Spinlocks

A spinlock is a lock where the processor waits in a loop
for the lock to become free

— Assumes lock will be held for a short time
— Used to protect the CPU scheduler and to implement locks

Spinlock::acquire() {
while (testAndSet(&lockValue) == BUSY)

4

}

Spinlock::release() {
lockValue = FREE;
memorybarrier();

}

Spinlocks and Interrupt Handlers

e Suppose an interrupt handler needs to access
some shared data => acquires spinlock

— To put a thread on the ready list (I/O completion)
— To switch between threads (time slice)

 What happens if a thread holds that spinlock
with interrupts enabled?

— Deadlock is possible unless ALL uses of that
spinlock are with interrupts disabled

How Many Spinlocks?

Various data structures

— Queue of waiting threads on lock X
— Queue of waiting threads on lock Y
— List of threads ready to run

One spinlock per kernel? Bottleneck!
One spinlock per lock

One spinlock for the scheduler ready list

— Per-core ready list: one spinlock per core
— Scheduler lock requires interrupts off!

Lock Implementation, Multiprocessor

Lock::acquire() { Lock::release() {

spinLock.acquire(); spinLock.acquire();

if (value == BUSY) { if (lwaiting.Empty()) {
waiting.add(myTCB); next = waiting.remove();
suspend(&spinlock); sched.makeReady(next);

}else { } else {
value = BUSY; value = FREE;

) }

spinLock.release(); spinLock.release();

} }

Semaphores

 Semaphore has a non-negative integer value

— P() atomically waits for value to become > 0, then
decrements

— V() atomically increments value (waking up waiter if
needed)

 Semaphores are like integers except:

— Only operations are P and V

— Operations are atomic
e |f valueis 1, two P’s will result in value 0 and one waiter

 Semaphores are useful for
— Unlocked wait/wakeup: interrupt handler, fork/join

Semaphore Implementation

Semaphore::P() { Semaphore::V() {
oldIPL=setInterrupts(OFF); oldIPL=setInterrupts(OFF);
spinLock.acquire(); spinLock.acquire();
if (value ==0) { if ('waiting.Empty()) {

waiting.add(myTCB); next = waiting.remove();
suspend(&spinlock); sched.makeReady(next);
}else { } else {
value--: value++;
} }
spinLock.release(); spinLock.release();
setinterrupts(oldIPL); setinterrupts(oldIPL);

Lock Implementation, Multiprocessor

Sched::suspend(SpinLock *sl) {

>x< .
TCB *#next; Sched::makeReady(TCB
oldIPL = setInterrupts(OFF); *thread) {

schedSL.acquire(); oldIPL =setInterrupts(OFF);
sl->release(); schedSL.acquire();
myTCB->state = WAITING; readyList.add(thread);
next = readyList.remove(); thread->state = READY:

switch(myTCB, next);
myTCB->state = RUNNING;
schedSL.release(); }
setinterrupts(oldIPL);

schedSL.release();
setinterrupts(oldIPL);

Lock Implementation, Linux

Most locks are free most of the time. Why?
— Linux implementation takes advantage of this fact

Fast path

— If lock is FREE and no one is waiting, two instructions
to acquire the lock

— If no one is waiting, two instructions to release

Slow path
— If lock is BUSY or someone is waiting (see multiproc)

Two versions: one with interrupts off, one w/o

Lock Implementation, Linux

struct mutex { // atomic decrement
/* 1: unlocked ; O: locked; // %eax is pointer to count
negative : locked, lock decl (%eax)

possible waiters */ jns 1f // jump if not signed

// (if value is now 0)

call slowpath_acquire
1:

atomic_t count;
spinlock_t wait_lock;
struct list_head wait_list;

5

Application Locks

* A system call for every lock acquire/release?
— Context switch in the kernel!

* |nstead:
— Spinlock at user level

— “Lazy” switch into kernel if spin for period of time

e Or scheduler activations:
— Thread context switch at user level

Mesa vs. Hoare semantics

* Mesa
— Signal puts waiter on ready list
— Signaller keeps lock and processor

* Hoare

— Signal gives processor and lock to waiter

— When waiter finishes, processor/lock given back
to signaller

— Nested signals possible!

FIFO Bounded Buffer
(Hoare semantics)

get() { put(item) {
lock.acquire(); lock.acquire();
if (front == tail) { if ((tail — front) == MAX) {

empty.wait(&lock); full. wait(&lock);

} }
item = buf[front % MAX]; buf[last % MAX] = item;
front++; last++;
full.signal(&lock); empty.signal(&lock);
lock.release(); // CAREFUL: someone else ran
return item; lock.release();

} }

Initially: front = tail = 0; MAX is buffer capacity
empty/full are condition variables

FIFO Bounded Buffer
(Mesa semantics)

Create a condition variable for every waiter
Queue condition variables (in FIFO order)
Signal picks the front of the queue to wake up
CAREFUL if spurious wakeups!

Easily extends to case where queue is LIFO,
priority, priority donation, ...

— With Hoare semantics, not as easy

FIFO Bounded Buffer
(Mesa semantics, put() is similar)

get() { // nextGet.first == self
lock.acquire(); delete nextGet.remove();
myPosition = numGets++; item = buf[front % MAX];
self = new Condition; front++;
nextGet.append(self); if (next = nextPut.first()) {
while (front < myPosition next->signal(&lock);

| | front == tail) { }
self.wait(&lock); lock.release();
} return item;
}

Initially: front = tail = numGets = 0; MAX is buffer capacity
nextGet, nextPut are queues of Condition Variables

Semaphore Bounded Buffer

get() { put(item) {
fullSlots.P(); emptySlots.P();
mutex.P(); mutex.P();
item = buf[front % MAX]; buf[last % MAX] = item;
front++; last++;
mutex.V(); mutex.V();
emptySlots.V(); fullSlots.V();
return item; }

}

Initially: front = last = 0; MAX is buffer capacity
mutex = 1; emptySlots = MAX; fullSlots = 0;

Implementing Condition Variables
using Semaphores (Take 1)

wait(lock) {
lock.release();
semaphore.P();
lock.acquire();
}

signal() {
semaphore.V();

J

Implementing Condition Variables

using Semaphores (Take 2)

wait(lock) {
lock.release();
semaphore.P();
lock.acquire();

}
signal() {
if (semaphore is not empty)
semaphore.V();

Implementing Condition Variables

using Semaphores (Take 3)

wait(lock) {
semaphore = new Semaphore;
queue.Append(semaphore); // queue of waiting threads
lock.release();
semaphore.P();
lock.acquire();

}
signal() {
if (lqueue.Empty()) {
semaphore = queue.Remove();
semaphore.V(); // wake up waiter

}
}

Communicating Sequential Processes
(CSP/Google Go)

* Athread per shared object
— Only thread allowed to touch object’s data

— To call a method on the object, send thread a
message with method name, arguments

— Thread waits in a loop, get msg, do operation

* No memory races!

Example: Bounded Buffer

get() { put(item) {
lock.acquire(); lock.acquire();
while (front == tail) { while ((tail — front) == MAX) {

empty.wait(lock); full.wait(lock);

} }
item = buf[front % MAX]; buf[tail % MAX] = item;
front++; tail++;
full.signal(lock); empty.signal(lock);
lock.release(); lock.release();
return item; }

}

Initially: front = tail = 0; MAX is buffer capacity
empty/full are condition variables

Bounded Buffer (CSP)

while (cmd = getNext()) {
if (cmd == GET) {

if (front < tail) { }else {// cmd == PUT
// do get if ((tail — front) < MAX) {
// send reply // do put
// if pending put, do it // send reply
// and send reply // if pending get, do it
} else // and send reply
// queue get operation } else
} // queue put operation

Locks/CVs vs. CSP

Create a lock on shared data
= create a single thread to operate on data

Call a method on a shared object
= send a message/wait for reply

Wait for a condition

= queue an operation that can’t be completed just
yet

Signal a condition
= perform a queued operation, now enabled

Remember the rules

Use consistent structure
Always use locks and condition variables

Always acquire lock at beginning of
procedure, release at end

Always hold lock when using a condition
variable

Always wait in while loop
Never spin in sleep()

