Storage Systems

Main Points

* Survey of physical storage hardware devices
— SRAM, DRAM, Flash, magnetic disk, tape
* File systems

— Useful abstraction on top of physical devices

* File system usage patterns

— Small files and large files are both commonplace

Storage Technologies

Cost/capacity

Word vs. block access

Persistence

Latency (read/write)

Throughput

Power drain (in use or when inactive)
Weight/volume

Volatile Memory: SRAM

e Static RAM (SRAM)
— Data stored in a transistor flip/flop
— Bits degrade on poweroff
— Access latency range: 1 — 10ns
— Bit density inversely proportional to clock rate
— Bit density scales with Moore’s Law
— Typical use: on chip cache, high speed access

Volatile Memory: DRAM

 Dynamic RAM (DRAM)
— Each bit stored in a capacitor
— 2D/3D array for dense packing
— 50-100 ns latency for word-level access

— Bits degrade even when powered, so must be
actively refreshed

— Power drain proportional to storage capacity
— Bit density scales with Moore’s Law
— Typical use: off-chip volatile random access

Persistent Memory: Flash

 NAND Flash/Solid State Drive (SSD)

— Blocks of bits stored persistently in silicon

— Densely packed in 2-D (soon 3-D) array

— Blocks remain valid even when unpowered

— Electrically reprogrammable, for a limited # of times
— 100 us block level (1KB) random read access

— Writes must be to a “clean” block, no update in place
— Erasing only for regions of blocks ~ 256KB

— Typical use: smartphones, laptops, cloud servers

Persistent Memory: Magnetic Storage

e Bits stored on magnetic surface
— 1 Tbit per square inch
— Physical motion needed to read bits off surface

* Magnetic disks
— Block level random access
— 10 ms random access latency
— 150MB/s streaming access

— Typical use: desktops, data center bulk storage

 Magnetic tapes: archival storage

Memory & storage historical pricing

Historical Cost of Computer Memory and Storage

May 7, 2016

1.00E+09
*
1.00E+08 -
® Flip-
1.00E+07 == Fllgps
[]
1.00E+06 | Core
H,A
A A ICson
1.00E+05 A boards
= SIMMs
1.00E+04 —O— t.‘“
0 e} ++ M e oits
1.00E+03 O =+ +
A
O o * O Big
Drives
g 1.00E+02
= + Floppy
= 0
< 1.00E+01 - prives
‘é Small
o Drives
> 1.00E+00
o e F|ash
£ Memory
2 1.00E-01
e=fm SSD
1.00E-02
1.00E-03
ash
1.00E-04
sk
1.00E-05
1.00E-06 +—— S
1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020
Y . .
ear [J. McCallum, jemit.com]
G. Gibson, www.pdl.cmu.edu 8

DRAM & disk pricing, 1991 angst

Historical Cost of Computer Memory and Storage

1.00E+09
.
1.00E+08 S
4 Flip-
1.00E+07 == FI::?ps
n a
1.00E+06 e Core
Risky t ject
1.008+05 ‘;, ISKY 10 project || + ea
= SIMMs
T — LV from recent trend -
0 o) ++ M \
==0==DIMMs
1.00E+03 O =+
+ A
O o O Big
Drives
g 1.00E+02
= + Floppy
> :
S 1.00E+01 - prives
‘:’ Small
o Drives
> 1.00E+00
< s Flash
£ Memory
2 1.00E-01
e=fm SSD
1.00E-02
1.00E-03
ash
1.00E-04
sk
1.00E-05
TLO0E-08 i
1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020
Year
May 7, 2016 G. Gibson, www.pdl.cmu.edu

DRAM & disk pricing divergin

Historical Cost of Computer Memory and Storage

1.00E+09
.
1.00E+08 S
4 Flip-
1.00E+07 = Pl
[]
1.00E+06 . " Coe
A ICson
1.00E+05 boards
= SIMMs
1.00E+04 —O0—
o) o
==0==DIMMs
1.00E+03 O
(6) O Big
& 1.00E+02 prives
£ + Floppy
€ 1.00E+01 prives
‘:’ Small
o Dri
> 1.00E+00 e
g = Flash
Memory
2 1.00E-01
e=(==3SD
1.00E-02
1.00E-03
ash
1.00E-04
sk
1.00E-05
1.00E-06

1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020

Year

May 7, 2016 G. Gibson, www.pdl.cmu.edu

DRAM & disk pricing diverging

Historical Cost of Computer Memory and Storage

1.00E+09 =
2
1.00E+08 *
1.00E+07 = . ,E:if,;s
[n
1.00E+06 - | Core
i m,A
A A ICson
1.00E+05 E w boards
1.00E+04 "O o i‘k‘ 2OX 2OOX() i - SIMMs
1 ° 14 o ® ==o==DIMMs
1.00E+03 = O + B
£ 3
EiaYal miiWaYasl : (ﬁ O O gir?ves
H + Floppy
DRAMIDISk Drives
gn_wall
rives
400 o= Flash
Memory
300 =p==3SD
200 : DIMM
100 H Flash
_ | i
0 Disk
OMOOANTOWWOO ~— ML
OO O OOOO0OO T« v v
NN loleoloNoloNoloNeNe
T AN ANANANANNNANAN — -
0 1985 1990 1995 2000 2005 2010 2015 2020
Year

May 7, 2016

G. Gibson, www.pdl.cmu.edu

11

Best solid state & disk, Moore’s Law?

Historical Cost of Computer Memory and Storage

1.00E+09 -
— 2
1.00E+08 *
[* Fip-
1.00E+07 - Fiops
[| |
B Core
1.00E+06 - i
§ m,A
r A A [Cson
1.00E+05 E 3 50/ /Y“{ — boards
s & A = O a4 - SIMMs
1.00E+04 —O—¢ A A =
F [¢) o) ++ A
[== DIMMs
1.00E+03 - o +
i (@] O Big
O ;
E 1.00E+02 E Drives
E i + Floppy
& 0
;, 1.00E+01 Drives
Q
2 F S
g | s
> 1.00E+00 -
o F = F|ash
£ Memory
S 1.00E-01 -
g —tm=SSD
Gap1s 30X
1.00E-03 d S
: ash
1.00E-04
sk
1.00E-05
1.00E-06 +

1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020

Year

May 7, 2016 G. Gibson, www.pdl.cmu.edu 12

Flash Memory

Source Control Drain
. .
Floating
Gate
@D, >
Source Drain

-

Flash Memory

Basic operation: read/write to 4KB block at a time
— Latency: 50-100 microseconds

— Native Command Queueing (NCQ) for concurrent ops
Blocks arranged in 2-D (soon 3-D) grid

— Can read/write blocks in different “lanes” concurrently

Writes must be to “clean” cells

— Multi-block erasure required before write
— Erasure block: 128 — 512 KB * # of lanes
— Erasure time: 1-2 milliseconds

Limited # of write cycles per block (~ 1000)

Intel SSD DC P3608 (2016)

Capacity

Page Size

Bandwidth (Sequential Reads)
Bandwidth (Sequential Writes)
Random 4KB Reads/sec
Random 4KB Writes/sec
Endurance

|dle/Active Power

Interface

4TB
4 KB
5 GB/s
3 GB/s (peak)
850 K
50K
5000 erase/write cycles
11W/20-40W
NVMe

Question

* Why are random writes so slow?

— Random write/sec: 50K
— Random read/sec: 850K

* Why are random writes so fast?

— 1ms/erase => max 1000 writes/sec

Question

Is persistence a problem?
— What if OS writes to the same block repeatedly?
— What if OS writes in a repeated scan?

1B blocks, lifetime 5000 writes/block
50K writes/sec (random)
750K writes/sec (sequential, peak)

Flash Translation Layer (FTL)

* Map logical block # to physical block #

— Transparent to operating system
— Translation stored in flash (along with each block)

— Translation cached in SRAM/DRAM
* On write, put new block anywhere clean

* Onread, look up translation to find most
recent written location

FTL Garbage Collection

Keep regions of recently erased blocks

of physical blocks > # of logical blocks (20-30%
extra)

Every block write creates an empty spot

— OS can also declare blocks dead (TRIM command)
Empty spot must be erased before reused

— Erasure only of multi-block regions (can be multi-MB)
Empty region by copying live pages to clean region

— More efficient if blocks stored together are deleted
together

Wear Levelling

* Each block can only be written a maximum
number of times
— FTL tracks # of erase/write cycles for each block

— Unmaps blocks that have worn out

* Preferentially write new blocks into regions
with fewer update cycles

Magnetic Disk

Spindle —

Surface

Platter —

Surface

0

Motor

.

Sector

Arm
Assembly

/

Motor

N

Disk Tracks

e ~ 1 micron wide
— Wavelength of light is ~ 0.5 micron
— Resolution of human eye: 50 microns
— 100K tracks on a typical 2.5” disk

* Separated by unused guard regions

— Reduces likelihood neighboring tracks are corrupted
during writes (still a small non-zero chance)

* Track length varies across disk
— Outside: More sectors per track, higher bandwidth

— Disk is organized into regions of tracks with same # of
sectors/track

— Only outer half of radius is used
* Most of the disk area in the outer regions of the disk

Sectors

Sectors contain sophisticated error correcting codes
— Disk head magnet has a field wider than track
— Hide corruptions due to neighboring track writes

* Sector sparing

— Remap bad sectors transparently to spare sectors on
the same surface

 Slip sparing

— Remap all sectors (when there is a bad sector) to
preserve sequential behavior

* Track skewing

— Sector numbers offset from one track to the next, to
allow for disk head movement for sequential ops

Disk Performance

Disk Latency =
Seek Time + Rotation Time + Transfer Time

Seek Time: time to move disk arm over track (1-20ms)

Fine-grained position adjustment necessary for head to “settle”
Head switch time ~ track switch time (on modern disks)

Rotation Time: time to wait for disk to rotate under disk
head

Disk rotation: 4 — 15ms (depending on price of disk)
On average, only need to wait half a rotation

Transfer Time: time to transfer data onto/off of disk

Disk head transfer rate: 50-100MB/s (5-10 usec/sector)
Host transfer rate dependent on I/O connector (USB, SATA, ...)

Toshiba Disk (2008)

Size

Platters/Heads

Capacity

Performance

Spindle speed

Average seek time read/write
Maximum seek time
Track-to-track seek time
Transfer rate (surface to buffer)
Transfer rate (buffer to host)
Buffer memory

Power

Typical

ldle

2/4
320 GB

7200 RPM
10.5ms/ 12.0 ms
19 ms

1 ms

54-128 MB/s
375 MB/s

16 MB

16.35 W
11.68 W

HGST Ultrastar Hel10 (2016)

Capacity

Spin Speed

Sustained Transfer Rate
Interface Transfer Rate
Seek time (avg)
Rotational latency (avg)
Cache

|dle/Operating Power
Bit Error Rate (read)

10 TB, 7 platters

/7200 RPM

249 MB/s (read), 225 MB/s (write)
1200 MB/s

8 ms (read), 8.6 ms (write)

4.16 ms

256 VB

6W/9.5W

107-15

Question

* How long to complete 100 random 4KB disk
reads, in FIFO order?

Question

* How long to complete 100 random 4KB disk
reads, in FIFO order?

— Seek: average 8 msec
— Rotation: average 4.16 msec
— Transfer: 4KB / 249 MB/s = 16 usec

e 100 * (8 +4.16 + 0.016) = 1.2 seconds

Question

* How long to complete 100 sequential 4KB disk
reads?

Question

* How long to complete 100 sequential 4KB disk
reads?

— Seek Time: 8 ms (to reach first sector)

— Rotation Time: 4.16 ms (to reach first sector)
— Transfer Time: 400KB / 249MB/sec = 1.6 ms

Total: 8 +4.16 + 1.6 =13.8 ms

— Might need an extra head or track switch (+1ms)

— Track buffer may allow some sectors to be read out
of order (-2ms)

Question

* How large a transfer is needed to achieve 80%
of the max disk transfer rate?

Question

* How large a transfer is needed to achieve 80%
of the max disk transfer rate?

Assume 12.16 ms to reach first sector
Assume x rotations are needed, 8.5ms/rotation

Then solve for x:
0.8 (12.16ms + 8.5ms x) = 8.5ms x

Total: x = 5.7 rotations, 12.1 MB

Disk Scheduling

* FIFO

— Schedule disk operations in order they arrive
— Downsides?

Disk Scheduling

 Shortest seek time first

— Not optimal!
e Suppose cluster of requests at far end of disk

— Downsides?

Disk Scheduling

e SCAN: move disk
arm in one direction,
until all requests
satisfied, then
reverse direction

 Also called “elevator
scheduling”

Disk Scheduling

e CSCAN: move disk
arm in one
direction, until all
requests satisfied,
then start again
from farthest
request

Disk Scheduling

 R-CSCAN: CSCAN
but take into
account that short
track switch is <
rotational delay

Question

* How long to complete 100 random disk reads,
in any order?

Question

* How long to complete 100 random disk reads,
in any order?

— Disk seek: 1ms (most will be short)
— Rotation: 4.16ms
— Transfer: 16usec
e Total: 100 * (1 + 4.16 + 0.016) = 0.52 seconds
— Would be a bit shorter with R-CSCAN

—vs. 1.2 seconds if FIFO order

Question

* How long to read all of the bytes off of a disk?

Question

* How long to read all of the bytes off of a disk?
— Disk capacity: 10TB
— Disk bandwidth: 249MB/s (average)

* Transfer time = 40K seconds (12 hours)

Question

* |f you read all the data off the disk, how likely
will some of the data be corrupted?

Question

* |f you read all the data off the disk, how likely
will some of the data be corrupted?

Bit error rate = 107-15
Bits per disk = 10TB = 10714
=>10% !!

Flas

SSD & disk pricing, recently

Historical Cost of Computer Memory and Storage

1.00E+09
.
1.00E+08 S
4 Flip-
1.00E+07 == Flfps
N a
1.00E+06 Core
H,A
A A |Cson
1.00E+05 boards
‘*i = SIMMs
1.00E+04 —0— ALk
[e) o) ++ A
4\ ==0==DIMMs
1.00E+03 O =+
+ A
O o O Big
& 1.00E+02 prives
§ =y, + Floppy
. :
5 1.00E+01 - s prives
2 = Small
o Drives
> 1.00E+00
o e F|ash
£ Memory
£ 1.00E-01 N
e=fm SSD
1.00E-02 ‘
1.00E-03
| lash
1.00E-04 — L \
Disk 1 \% low ik
1.00E-05
1SK 1mprovement SIOWS
1.00E-06 e b b e e b b e e e b
1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020
Year
May 7, 2016 G. Gibson, www.pdl.cmu.edu

45

Shingled magnetic recording (SMR)

head

« Uses ~current tech :
motion

« QOverlap adjacent
tracks (no gap)

 More tracks/inch
 No sector overwrite /

progressive

scans /
Wood, Trans. Magnetics., 2009

« Two-dimensional magnetic recording (TDMR)
— Inter-track interference ever worse, data dependent
— Give up on flying head path staying “in track”
— Include 2 (then 3) read sensors per head
« Read multiple “sub-tracks”, signal process to data

/ downtrack

May 7, 2016 G. Gibson, www.pdl.cmu.edu 46

SMR today/TDMR soon
* Hidden behind “Shingle Translation Layer (STL)”

— Embedded layer that re-writes entire region
— New blocks go to empty spill region
— Re-write/coalesce existing regions when mostly empty

* Adding 10% - 30% areal density (not 2X soon)

* Interesting parallel/convergence
— FTL sequentially writes flash pages in erase block
— Flash erase block analogous to shingled band

May 7, 2016 G. Gibson, www.pdl.cmu.edu 47

More Changes In Store for Disks

* Heat-Assisted (HAMR)

Small bits need high coercivity
media to retain orientation

High coercivity media is not
changed by normal writing

Heated media lowers coercivity
Include lasers on Rd/Wr head?

May 7, 2016

Coercivity,H,

A

A

H,, (Write field)

RT

T, (Write temp.)

Temperature

« Bit-Patterned (BPM)

e Small bits retain orientation
more easily if bits kept apart

« Pattern media so only write
a single dot per bit

» Tera-dots per sq. inch?

conventional

multigrain media \—\
N

data 0°1'0°1'1°0'1°0'0"1

G. Gibson, www.pdl.cmu.edu

patterned magnetic media

48

Still, not looking good for disk

Driven from margin-rich enterprise apps
Driven from volume rich mobile
Big changes in fabrication & materials

Small number of companies playing
— Natural disasters can change everything

How much will cloud storage growth pay?

Watch for HAMR roll out in next few years

G. Gibson, www.pdl.cmu.edu

Non-flash solid state

* 3D Xpoint, PCM, Memristor, ReRAM
— Non-volatile is about lower operating power (TCO)
— Chasing DRAM market share

* Pressure on SSD market likely to be incidental

— Alayer behind DIMMs (or Hybrid Memory Cube)

 Or a program managed second memory type

* Orders of magnitude better endurance
— But latency benefiting as much or more
— Direct access w/o wear leveling expires cell in mins

* For big data, these are memory, not storage

May 7, 2016 G. Gibson, www.pdl.cmu.edu 50

File System as lllusionist:
Hide Limitations of Physical Storage

Persistence of data stored in file system:
— Even if crash happens during an update

— Even if disk block becomes corrupted

— Even if flash memory wears out

Naming:

— Named data instead of disk block numbers
— Directories instead of flat storage

— Byte addressable data even though devices are block-
oriented

Performance:
— Cached data
— Data placement and data structure organization

Controlled access to shared data

File System Abstraction

File system

— Persistent, named data

— Hierarchical organization (directories, subdirectories)
— Access control on data

File: named collection of data
— Linear sequence of bytes (or a set of sequences)
— Read/write or memory mapped

Crash and storage error tolerance

— Operating system crashes (and disk errors) leave file
system in a valid state

Performance
— Achieve close to the hardware limit in the average case

File System Workload

* File sizes
— Are most files small or large?

— Which accounts for more total storage: small or
large files?

File System Workload

* File sizes

— Are most files small or large?
* SMALL

— Which accounts for more total storage: small or
large files?
* LARGE

File System Workload

* File access
— Are most accesses to small or large files?

— Which accounts for more total /0 bytes: small or
large files?

File System Workload

* File access

— Are most accesses to small or large files?
* SMALL

— Which accounts for more total I/0 bytes: small or
large files?
* LARGE

File System Workload

* How are files used?
— Most files are read/written sequentially
— Some files are read/written randomly

e Ex: database files, swap files
— Some files have a pre-defined size at creation
— Some files start small and grow over time

* Ex: program stdout, system logs

File System Design

* For small files:
— Small blocks for storage efficiency
— Concurrent ops more efficient than sequential
— Files used together should be stored together

* For large files:
— Storage efficient (large blocks)
— Contiguous allocation for sequential access
— Efficient lookup for random access

 May not know at file creation
— Whether file will become small or large

— Whether file is persistent or temporary
— Whether file will be used sequentially or randomly

File System Abstraction

Directory

— Group of named files or subdirectories

— Mapping from file name to file metadata location
Path

— String that uniquely identifies file or directory

— Ex: /cse/www/education/courses/cse451/12au
Links

— Hard link: link from name to metadata location

— Soft link: link from name to alternate name
Mount

— Mapping from name in one file system to root of another

UNIX File System AP]

e create, link, unlink, createdir, rmdir
— Create file, link to file, remove link
— Create directory, remove directory

* open, close, read, write, seek
— Open/close a file for reading/writing
— Seek resets current position

e fsync
— File modifications can be cached

— fsync forces modifications to disk (like a memory
barrier)

File System Interface

UNIX file open is a Swiss Army knife:
— Open the file, return file descriptor
— Options:

e if file doesn’t exist, return an error

* If file doesn’t exist, create file and open it
If file does exist, return an error
If file does exist, open file

If file exists but isn’t empty, nix it then open
If file exists but isn’t empty, return an error

Interface Design Question

* Why not separate syscalls for open/create/
exists?
— Would be more modular!

if (lexists(name))
create(name); // can create fail?
fd = open(name); // does the file exist?

