Main Points

e How virtual machines work
* Why network and disk I/O is slow
e What we can do about it
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Virtual Machines

e Most data centers insert an extra “virtual machine”
layer

* Modify host operating system so that it can run a
“guest” operating system as a (user-level) application

* Guest operating system thinks it is running on raw
hardware
* Runs at user-level

* Application (guest user-level) thinks it is running on
guest OS running on raw hardware

* Has guest OS to itself



Virtual Machine Pros/Cons

* Separation of data center management from
application’s choice of operating system

Multiple web servers per physical machine

Each with a different OS

Easy to migrate virtual machine

Easy to limit access by guest OS to other nodes

* Cost of redirection
* For virtual memory mapping and 1/O
* Emerging hardware support to reduce cost
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Question

* How many crossings are needed to handle a web
request on a server running on a guest OS running
on a virtual machine?

Network 1/0 interrupt delivered to host kernel

Transfers control to guest OS to handle interrupt

Return from interrupt back to host kernel

Resumes application

System call trap to read from network, to host kernel

Transfers control to guest OS to handle system call

Return from system call back to host kernel

Resumes application



Virtual Machines and Virtual Memory
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Segment Table Page Table A Page Table B
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1 Page Table B 1 0006 1 0004
X (restinvalid) 2 0000 2 0003
3 0005 X (restinvalid)

X (restinvalid)

Segment Table

Page Table K

0 Page Table K

X

(rest invalid)

0
1

N OO O AWM

X

BEEF
FO00
CAFE
3333
(invalid)
BA11
DEAD
5555

(rest invalid)




Shadow Page Tables
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Hardware Support for
Virtual Machine Translation

* x86 recently added hardware support for running
virtual machines at user level

* Operating system kernel initializes two sets of
translation tables
* One for the guest OS
* One for the host OS

 Hardware translates address in two steps

* First using guest OS tables, then host OS tables
* TLB holds composition



Containers

* Provide applications the illusion of their own virtual
machine
 Own process ID table
* Own network socket addresses
* Own file descriptor table

* Running directly on Linux or other OS
* By modifying system call handling
* No system call redirection
* No virtual machine redirection



Arrakis: High I/O Performance OS

* Server |/O performance matters

Intel X520 Intel RS3 RAID Sandy Bridge CPU
10G NIC 1GB flash-backed cache 6 cores, 2.2 GHz
50ns / 64B pkt 25 us / 1KB write



Networks: Fast and Growing Faster
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Can’t we just use Linux?



Linux 1/O Performance
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Arrakis Goals

* Skip kernel & deliver |/O directly to applications
* Reduce OS overhead

* Keep classical server OS kernel features
* Process protection
* Resource limits
* |/O protocol flexibility
* Global naming

* The hardware can help us...



Hardware |/O Virtualization

e Standard on network, emerging on storage

Redis Webserver

Provided in hardware:

* Multiplexing 'VNIC 1 ' VNlczl

* E.g., Virtual network cards (VNICs) @ @
Rate limiters
 Protection

e Attach VNICs to application memory

/ NIC packet ﬁlters

* Packet filters, logical disks:
Allow only eligible 1/0 from apps

* |/O Scheduling

* Rate limiters, packet schedulers

Network



How to skip the kernel?
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Arrakis I/0O Architecture

Control Plane
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Arrakis Control Plane

e Access control
* Do once when configuring data plane
* Enforced via NIC filters, logical disks

e Resource limits
* Program hardware |I/O schedulers

* Global naming
 Virtual file system still in kernel
e Storage implementation in applications

Kernel

Access control

Resource limits

/IIE
o




Storage Space Allocation

Virtual Storage Area

Free space




Global Naming

Virtual Storage Area

/tmp/lockfile
/var/lib/key value.db

Indirection |
/etc/config.rc

open(“/etc/config.rc”)
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Redis Latency

* Reduced (in-memory) GET latency by 65%

Linux FalAtyzs Kernel 62% App 20% 9 us

Arrakis HW 33% liblO 35% App 32% 4 us

* Reduced (persistent) SET latency by 81%

S

Linux (ext4) [\\ES Kernel 84% /p 163 us

Arrakis HW 77% "';.!/? App15% 31 us



Redis Throughput
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memcached Scalability

10Gb/s interface limit
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FlexNIC:
A Model for Integrated NIC/SW Processing

* Must be implementable at line rate with low cost

* Match+action pipeline:

M+A Stage 1 M+A 2
Match TabIeI
! Packet I I
Parser \Action ALU/ ﬁ

Extracted

H r Fiel I Modified Fields




Match+Action Programs: Actions

Match:
IF udp.port == kvs

Action:
core = HASH(kvs.key) % 2
DMA hash, kvs TO Cores|[core]

Supports: Does not support:
* Steer packet * Loops
* Calculate hash/Xsum  Complex calculations

* Initiate DMA operations ¢ Keeping large state
* Trigger reply packet
* Modify packets



FlexNIC: M+A for NICs

Ingress
Pipeline

Egress

Queues
Pipeline

Puoehne

* Efficient application level processing in the NIC
Improve locality by steering to cores based on app criteria
Transform packets for efficient processing in SW

DMA directly into and out of application data structures
Send acknowledgements on NIC



Example: Key-Value Store

Hash Table

Receive-side scaling:
core = hash(connection) % N

Client 1
K=3,4

 Lock contention

Client 2
K=1,4,7

e Poor cache utilization

Client 3
K=1,7,8




Optimizing Reads: Key-based

Steerine
Match: Hash Table
IF udp.port == kvs
Action: 1
Client 1 : 2
K=4,3
* No locks needed 3
Client 2 e Better cache utilization 4
K=1 4 5
Client 3 6
K=1 78 7
8



Optimizing Writes: Custom DMA

Event Queue
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 DMA to application-level data structures
* Requires packet validation and transformation



Real-time Analytics System
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Evaluation of the Model

* Measure impact on application performance
e Without waiting for hardware implementation

e Re-use existing NIC functionality
* Hash on certain fields

» Software emulation of M+A pipeline

Key-value store:
 Workload: 100k 32B keys, 64B values, 90% GET
* 6 Core Sandy Bridge Xeon 2.2GHz, 2x 10G links



Key-based steering

Throughput [m op/s]
I

* Better g
* PClé

* 30-45¢
* Proces:

1 2 3 4 5

Number of CPU Cores

Steering and custom DMA

reduces time from 510ns to 200ns

M FlexKVS/Flow
M FlexKVS/Key
M FlexKVS/Linux

Memcached




Arrakis and FlexNIC

* Data center applications need high performance |/O

* Rethink operating system and |I/O hardware
* Deliver packets, storage directly to applications
* Hardware support for flexible I/O pipeline processing

e Source code, papers:
http://arrakis.cs.washington.edu/



