Main Points

e How virtual machines work
* Why network and disk I/O is slow
e What we can do about it

Server

Buffer

4,
Request _ Parse Request Reply

Buffer | %

9.
Format Reply

1. 3. d. 8. 10.
Network Kernel Copy File Read Kernel Copy Write and Copy
Socket Read ? ? to Kernel Buffer
Kernel , I K
2. 6. 7. 12,
Copy Arriving Disk Request Disk Data Format Outgoing
Packet (DMA) (DMA) Packet and DMA
Hardware V :

Disk Interfac

.
.
...

Virtual Machines

e Most data centers insert an extra “virtual machine”
layer

* Modify host operating system so that it can run a
“guest” operating system as a (user-level) application

* Guest operating system thinks it is running on raw
hardware
* Runs at user-level

* Application (guest user-level) thinks it is running on
guest OS running on raw hardware

* Has guest OS to itself

Virtual Machine Pros/Cons

* Separation of data center management from
application’s choice of operating system

Multiple web servers per physical machine

Each with a different OS

Easy to migrate virtual machine

Easy to limit access by guest OS to other nodes

* Cost of redirection
* For virtual memory mapping and 1/O
* Emerging hardware support to reduce cost

Guest User Mode
Host User Mode

Host User Mode

Guest Kernel Mode

Guest PC
Guest SP
Guest Flags

Host KernelMode

Host PC
Host SP
Host Flags

.........

.........

Guest Guest
Process Process
Guest
trap) S Program
Counter
Guest Kernel Timer
Guest Guest 17> Handler
Exception Guest file system Interrupt
Stack and other kernel Table | | Syscall
services Handler
Host Kernel Timer
Host Host T > Handler
Exception Virtual Interrupt
Stack Disk Table [Syscall
Handler
Hardware Physical

Disk

Question

* How many crossings are needed to handle a web
request on a server running on a guest OS running
on a virtual machine?

Network 1/0 interrupt delivered to host kernel

Transfers control to guest OS to handle interrupt

Return from interrupt back to host kernel

Resumes application

System call trap to read from network, to host kernel

Transfers control to guest OS to handle system call

Return from system call back to host kernel

Resumes application

Virtual Machines and Virtual Memory

Guest Virtual Guest Physical Host Physical
Address Space Address Space Memory
Guest Virtual Guest Page Table Guest Physical Host Page Table
Address Address
..................................... > EREEEEEE XXXN R R R P P P PR RS 3 cessened
: Guest Physical
Address

cesecssccsccnns ;"""""')

: : : Host Physical

NN ey Address

Segment Table Page Table A Page Table B
0 Page Table A 0 0002 0 0001
1 Page Table B 1 0006 1 0004
X (restinvalid) 2 0000 2 0003
3 0005 X (restinvalid)

X (restinvalid)

Segment Table

Page Table K

0 Page Table K

X

(rest invalid)

0
1

N OO O AWM

X

BEEF
FO00
CAFE
3333
(invalid)
BA11
DEAD
5555

(rest invalid)

Shadow Page Tables

Guest Virtual

Address Space

Guest Virtual
Address

Guest Page Table

Guest Physical

Address

Guest Physical
Address Space

Guest Physical
Address

......................... >

Host Physical
Address

Host Page Table

Host Physical

Address

Host Physical
Memory

Hardware Support for
Virtual Machine Translation

* x86 recently added hardware support for running
virtual machines at user level

* Operating system kernel initializes two sets of
translation tables
* One for the guest OS
* One for the host OS

 Hardware translates address in two steps

* First using guest OS tables, then host OS tables
* TLB holds composition

Containers

* Provide applications the illusion of their own virtual
machine
 Own process ID table
* Own network socket addresses
* Own file descriptor table

* Running directly on Linux or other OS
* By modifying system call handling
* No system call redirection
* No virtual machine redirection

Arrakis: High I/O Performance OS

* Server |/O performance matters

Intel X520 Intel RS3 RAID Sandy Bridge CPU
10G NIC 1GB flash-backed cache 6 cores, 2.2 GHz
50ns / 64B pkt 25 us / 1KB write

Networks: Fast and Growing Faster

1T

400 GbE
Q) 100 GbE
% 100 G °
g 12ns inter-arrival time for
2 106 64B packets at 40Gbps
o0
3 16 o
100 MbE
100 M ®
1990 1995 2000 2005 2010 2015 2020

Year of Standard Release

Can’t we just use Linux?

Linux 1/O Performance

/

Kernel

_

% OF 1KB REQUEST TIME SPENT

. I HW 18% Kernel 62% App 20%
Redis

Kernel mediation
is too heavyweight

|/O Processing Copying

10G NIC RAID Storage
50ns / 64B packet 25 us / 1KB write

Data
Path

Arrakis Goals

* Skip kernel & deliver |/O directly to applications
* Reduce OS overhead

* Keep classical server OS kernel features
* Process protection
* Resource limits
* |/O protocol flexibility
* Global naming

* The hardware can help us...

Hardware |/O Virtualization

e Standard on network, emerging on storage

Redis Webserver

Provided in hardware:

* Multiplexing 'VNIC 1 ' VNlczl

* E.g., Virtual network cards (VNICs) @ @
Rate limiters
 Protection

e Attach VNICs to application memory

/ NIC packet ﬁlters

* Packet filters, logical disks:
Allow only eligible 1/0 from apps

* |/O Scheduling

* Rate limiters, packet schedulers

Network

How to skip the kernel?
" ~ R

)/

\ L Library y
- /

A
Naming
Kernel Access control
I/O Processing

-

VAN

k Protection

-

/0 Devices

- J

Data
Path

Arrakis I/0O Architecture

Control Plane

4)

Kernel

Naming

Data Plane

//

=
Redis

|/O Processing

Resource limits

N fesource imits i

N\ Y,

I Data Path

/O Devices

Multiplexing

/0 scheduiing |

#

Arrakis Control Plane

e Access control
* Do once when configuring data plane
* Enforced via NIC filters, logical disks

e Resource limits
* Program hardware |I/O schedulers

* Global naming
 Virtual file system still in kernel
e Storage implementation in applications

Kernel

Access control

Resource limits

/IIE
o

Storage Space Allocation

Virtual Storage Area

Free space

Global Naming

Virtual Storage Area

/tmp/lockfile
/var/lib/key value.db

Indirection |
/etc/config.rc

open(“/etc/config.rc”)

Arrakis 1/O Architecture

Control Plane Data Plane

Redis
4 ™\
Kernel)

Naming

I Data Path
| Resource limits 4)
NG '/

Resource limits

/O Devices

Multiplexing
_ 1/O Scheduling Y,

\ 4

Redis Latency

* Reduced (in-memory) GET latency by 65%

Linux FalAtyzs Kernel 62% App 20% 9 us

Arrakis HW 33% liblO 35% App 32% 4 us

* Reduced (persistent) SET latency by 81%

S

Linux (ext4) [\\ES Kernel 84% /p 163 us

Arrakis HW 77% "';.!/? App15% 31 us

Redis Throughput

SET operations
120

100
80
9
Throughput 60 X
[k transactions/s]
40
20 1x
0 I

Linux Arrakis Arrakis
Intel RS3 Intel RS3 ioDrive2
[25us] [25us] [15us]

memcached Scalability

10Gb/s interface limit
1200

1000

800

Throughput

(k transactions/s) 600

400 1.8x

200 1x

0
1 2 4

Number of CPU cores

M Linux ™ Arrakis

FlexNIC:
A Model for Integrated NIC/SW Processing

* Must be implementable at line rate with low cost

* Match+action pipeline:

M+A Stage 1 M+A 2
Match TabIeI
! Packet I I
Parser \Action ALU/ ﬁ

Extracted

H r Fiel I Modified Fields

Match+Action Programs: Actions

Match:
IF udp.port == kvs

Action:
core = HASH(kvs.key) % 2
DMA hash, kvs TO Cores|[core]

Supports: Does not support:
* Steer packet * Loops
* Calculate hash/Xsum Complex calculations

* Initiate DMA operations ¢ Keeping large state
* Trigger reply packet
* Modify packets

FlexNIC: M+A for NICs

Ingress
Pipeline

Egress

Queues
Pipeline

Puoehne

* Efficient application level processing in the NIC
Improve locality by steering to cores based on app criteria
Transform packets for efficient processing in SW

DMA directly into and out of application data structures
Send acknowledgements on NIC

Example: Key-Value Store

Hash Table

Receive-side scaling:
core = hash(connection) % N

Client 1
K=3,4

 Lock contention

Client 2
K=1,4,7

e Poor cache utilization

Client 3
K=1,7,8

Optimizing Reads: Key-based

Steerine
Match: Hash Table
IF udp.port == kvs
Action: 1
Client 1 : 2
K=4,3
* No locks needed 3
Client 2 e Better cache utilization 4
K=1 4 5
Client 3 6
K=1 78 7
8

Optimizing Writes: Custom DMA

Event Queue

G S

VAN

GET, Clien| SET, Client ID, Item Pointer

/

ltem 1 ltem 2

Iltem Log

 DMA to application-level data structures
* Requires packet validation and transformation

Real-time Analytics System

» Offload (de)multiplexing and ACK generation to
FlexNIC e e mmm————— - -

Software

‘_---‘
(@)
o o
S C
~ =

C ue 1e _ =
[NIC W

Evaluation of the Model

* Measure impact on application performance
e Without waiting for hardware implementation

e Re-use existing NIC functionality
* Hash on certain fields

» Software emulation of M+A pipeline

Key-value store:
 Workload: 100k 32B keys, 64B values, 90% GET
* 6 Core Sandy Bridge Xeon 2.2GHz, 2x 10G links

Key-based steering

Throughput [m op/s]
I

* Better g
* PClé

* 30-45¢
* Proces:

1 2 3 4 5

Number of CPU Cores

Steering and custom DMA

reduces time from 510ns to 200ns

M FlexKVS/Flow
M FlexKVS/Key
M FlexKVS/Linux

Memcached

Arrakis and FlexNIC

* Data center applications need high performance |/O

* Rethink operating system and |I/O hardware
* Deliver packets, storage directly to applications
* Hardware support for flexible I/O pipeline processing

e Source code, papers:
http://arrakis.cs.washington.edu/

