File Systems

Main Points

* File layout
* Directory layout

File System Design Constraints

* For small files:
— Small blocks for storage efficiency
— Files used together should be stored together

* For large files:
— Contiguous allocation for sequential access
— Efficient lookup for random access

 May not know at file creation
— Whether file will become small or large

File System Design

 Data structures

— Directories: file name -> file metadata
e Store directories as files

— File metadata: how to find file data blocks
— Free map: list of free disk blocks
* How do we organize these data structures?

— Device has non-uniform performance

Design Challenges

Index structure
— How do we locate the blocks of a file?

Index granularity
— What block size do we use?

Free space

— How do we find unused blocks on disk?
Locality

— How do we preserve spatial locality?
Reliability

— What if machine crashes in middle of a file system op?

File System Design Options

FAT FFS NTFS
Index Linked list Tree Tree
structure (fixed, assym) | (dynamic)
granularity block block extent
free space FAT array Bitmap Bitmap
allocation (fixed (file)
location)
Locality |defragmentation| Block groups Extents
+ reserve Best fit
space defrag

Named Data in a File System

index
file name directog file number structur}e storage

offset offset block

Microsoft File Allocation Table (FAT)

* Linked list index structure

— Simple, easy to implement

— Still widely used (e.g., thumb drives)
* File table:

— Linear map of all blocks on disk
— Each file a linked list of blocks

ocovooNONULThWN—_OOONOULIDAWN—O

N0 e P e R I I I e e i

FAT

MFT Data Blocks
< file 9 block 3
— file 9 block 0
— file 9 block 1
file 9 block 2

file 12 block 0

- file 12 block 1
M file 9 block 4

FAT

* Pros:
— Easy to find free block
— Easy to append to a file
— Easy to delete a file

e Cons:
— Small file access is slow
— Random access is very slow

— Fragmentation
* File blocks for a given file may be scattered
* Files in the same directory may be scattered
* Problem becomes worse as disk fills

Berkeley UNIX FFS (Fast File System)

* inode table
— Analogous to FAT table

* inode
— Metadata

* File owner, access permissions, access times, ...

— Set of 12 data pointers
— With 4KB blocks => max size of 48KB files

FFS inode

Metadata

— File owner, access permissions, access times, ...
Set of 12 data pointers
— With 4KB blocks => max size of 48KB files

Indirect block pointer

— pointer to disk block of data pointers

Indirect block: 1K data blocks => 4MB (+48KB)

FFS inode

Metadata

— File owner, access permissions, access times, ...

Set of 12 data pointers

— With 4KB blocks => max size of 48KB
Indirect block pointer

— pointer to disk block of data pointers

— 4KB block size => 1K data blocks => 4MB
Doubly indirect block pointer

— Doubly indirect block => 1K indirect blocks
— 4GB (+ 4MB + 48KB)

FFS inode

Metadata
— File owner, access permissions, access times, ...
Set of 12 data pointers
— With 4KB blocks => max size of 48KB
Indirect block pointer
— pointer to disk block of data pointers
— 4KB block size => 1K data blocks => 4MB
Doubly indirect block pointer
— Doubly indirect block => 1K indirect blocks
— 4GB (+ 4MB + 48KB)
Triply indirect block pointer
— Triply indirect block => 1K doubly indirect blocks
— 4TB (+ 4GB + 4MB + 48KB)

Inode Array Triple Double

Indirect Indirect Indirect Data
Inode Blocks Blocks Blocks Blocks
.. >
...)
File Metadata
Direct Pointer _,,.§ é ..)
DP ek B, ,
DP : :
DP .. > :
DP P :
................... >
DP
DP
DP .
DP : > : > T 3
DP oo :
DP :
DIreCt P0|nte|’ .' S > ceeeeccccttcsstttcccccccasdd)
IndlreCt POInter e sereceeteciiietaans Pl feccccccricitiiitnciiananns Pl Feeececciiiiiiiiiiiiiiiaans >
.| Dbl Indirect Pr. [--eeeseeeininid T
TI’Ip| IndireCt Ptr > ::::::::: e > eerrereenraenenees >
................... > ceeeeens
...................))

FFS Asymmetric Tree

* Small files: shallow tree
— Efficient storage for small files

* Large files: deep tree

— Efficient lookup for random access in large files

e Sparse files: only fill pointers if needed

FFS Locality

* Block group allocation
— Block group is a set of nearby cylinders
— Files in same directory located in same group
— Subdirectories located in different block groups

* inode table spread throughout disk

— inodes, bitmap near file blocks

e First fit allocation

— Small files fragmented, large files contiguous

Block Group 0

Block Group 1

Block Group 2

FFS First Fit Block Allocation

In-Use Free
Start of BlOck BJ})Ck
Block EINNImT [[[B B [T T T T T T TTT1] e

Group

FFS First Fit Block Allocation

Start of Write Two Block File

Block DI [[O D [[[T TTTTTT]eee
Group

FFS First Fit Block Allocation

Start of Write Large File

Block|||||||||||||||“|¥IZW33---

Group

FFS

* Pros
— Efficient storage for both small and large files
— Locality for both small and large files
— Locality for metadata and data

e Cons

— Inefficient for tiny files (a 1 byte file requires both an
inode and a data block)

— Inefficient encoding when file is mostly contiguous on
disk (no equivalent to superpages)

— Need to reserve 10-20% of free space to prevent
fragmentation

NTFS

* Master File Table
— Flexible 1KB storage for metadata and data

* Extents

— Block pointers cover runs of blocks

— Similar approach in linux (ext4)

— File create can provide hint as to size of file
* Journalling for reliability

— Next chapter

Master File Table

NTFS Small File

- MFT Record (small file)

Std. Info.

File Name

Data (resident)

(free)

MFT

NTFS Medium-Sized File

Start

O

L

P

a [m

==

(@)

=
MFT Record s
Std. Info. | File Name | Data (nonresident) (free)
' Start

yibuan

Jusix3 ele

MFT

NTFS Indirect Block

MFT Record
(part 1)
Std. Info. Attr.list File Name Data (nonresident)
. S
2| 5
MFT Record :
(part 2) i.........................' :“)
Std. Info. Data (nonresident) (free)
1
ARE g

MFT

MFT Record
(small file)

Std. Info. Data (resident)

MFT Record
(normal file)

Std. Info.

Data nonreS|dent

MFT Record

(big/fragmented file)

Std. Info. | Attr.list Data (nonre3|dent
g g.)ﬂ
Data (nonresident)
s T
LU
'......: oy b

Data (nonresident)

éa)D éa) pre—
59 :

e . BN

Data (nonresident)

0

Il

MFT

MFT Record
(huge/badly-fragmented file)

Std. Info. Attr.list (nonresident)

Data (nonresident)

0

Data (nonresident)

I

Data (nonresident)

0

i

Data (nonresident)

0

I

Data (nonresident)

0

I

Named Data in a File System

index
file name directog file number structur}e storage

offset offset block

Directories Are Files

) S—

music 320
work 219
foo.txt 871

Recursive Filename Lookup

AN
File2 | bin 737
“I” | usr 924
home158
~->File 158 | mike 682
“/home” | ada 818
tom 830
I A\
~->Fjle 830 | music 320
“Thome/tom” | work 219
foo.txt 8771
oo File 871 | 1he qui b
“Thome/tom/foo.txt” | brown fox
jumped
over the
lazy dog.

Directory Layout

Directory stored as a file
Linear search to find filename (small directories)

File 830
“lhome/tom”
Name . .. music | work foo.txt m
File Number| 830 | 158 | 320 | 219 |FreeSpace| 871 Free Space | o,
Next >

Hash

Entry Pointer

Hash Number
Name

File Number

Root
Before| 240 | 510 | 730 | 980
Child Pointer g g
Child Child
Before| 58 121 180 | 240 780 | 841 930 | 980
cidponter | 1 1 ¢ | . | : | e
Leaf il v v Leaf
15 30 44 58
foo.txt | music work | code bin test
830 158 871 320 219 3 014 324

Large Directories: B Trees

Search for Hash (foo.txt) = 0x30

Large Directories: Layout

File Containing Directory

Name music | work Root | Child | Leaf Leaf | Child
File Number 320 219

Directory Entries B+Tree Nodes

