
CSE 451 Section

Assignment 3

Virtual Memory

• Important mechanism, enables:
• Isolation and protection
• Virtualization: physical memory layout hidden

•OS sets up mapping: virtual -> physical address
• Page table: translation structure

•CPU checks and translates on memory accesses
• Translations cached by CPU for performance: TLB

Paging / Swapping

•Create illusion of more physical memory
• (Still limited by size of backing store)

•Physical memory treated as cache for backing store
• If we access not in cache, fetch from backing store
• Might have to evict something else

•A number of design choices:
• When do you write back dirty pages? Eagerly vs. lazily?

• Which page is evicted?

MIPS virtual memory

•MIPS has software-loaded TLB
• Page table lookup is implemented in software
• TLB miss traps to kernel, kernel translates and adds to TLB

•64 cache entries, fully associative:
• Virtual page number
• Physical page number

• Valid and writable (dirty) bit
• Adress space id (tag)

•This actually leads to some chicken-egg problems
• Doing page table accesses in software will access memory

OS/161 memory layout

#define PAGE_SIZE

* MIPS-I hardwired memory layout:

* 0xc0000000 - 0xffffffff kseg2
(kernel, tlb-mapped)

* 0xa0000000 - 0xbfffffff kseg1
(kernel, unmapped uncached)

* 0x80000000 - 0x9fffffff kseg0
(kernel, unmapped, cached)

* 0x00000000 - 0x7fffffff kuseg

(user, tlb-mapped)

Implementing translation in OS/161

•TLB miss  trap to kernel
• vm_fault(int faulttype,

vaddr_t faultaddress)

•Functions for manipulating TLB provided
• See tlb_* functions in kern/arch/mips/include/tlb.h

•What should happen on a context switch?

•Eviction scheme?

Virtual memory with multi core

• TLBs are local to cores
• Need to manually invalidate if other core changes mapping

• TLB shootdown

•OS/161 terminology
• ipi_tlbshootdown: shoot down specified entries on

specified CPU

• vm_tlbshootdown: shoot down specified entries on this CPU

• vm_tlbshootdown_all: shoot down all entries on this CPU
• You need to implement vm_tlbshootdown/_all

• Note: Shooting down all entries technically shoots down any specified entries

Core Map

•Mapping from physical pages to virtual pages

•Remember: core map must also be in physical
memory!
• Core map must be in core map

•How big should the core map be?
• How many entries does the core map have?

•How do you reserve space for it?

•When should you reserve space for it?

Address Spaces

•High-level virtual memory abstraction
• Page tables are built from this

•Consist of multiple disjoint segments
• Generally larger than a page
• Virtual address range, permissions

•See addrspace API

Swapping Implementation

•Where do you store swapped out pages?

•Multiple options: files, disk directly

•You can access the raw disk with vfs: “lhd0raw:"
• Need to manage disk locations

• How will you represent this information?

• Need to map pages to disk locations
• Where will you keep this information?

