
CSE 451 Section

Assignment 2

Overview

•File management
• System calls: open, close, read, write

•Process management
• System calls: getpid, fork, exec, waitpid, _exit

Three milestones in assignment:
1. In-class review of design document

2. Submit design document
3. Submit implementation (and design document)

File Management

•Need a per-process data structure to organize files –
a file table

•Things to consider:
• What data structure will you use?
• What will data structure entries hold?

• How will it be synchronized?

•Open files are represented by unique integers called
a file descriptors

File System Calls – open

int open(const char *filename, int flags)

•Takes in a filename of file to open

•Flags determine read/write permissions and
create/truncate details – refer to man pages

•Returns a non-negative file descriptor on success,
-1 on failure

•Note: ignore the optional mode

File System Calls – open

•File descriptors 0, 1, and 2 are reserved for stdin,
stdout, and stderr respectively

•Attached to the console – named “:con”

•OS/161 provides the virtual file system (vfs). It is a
layer of abstraction between the os and file system
• You only need to interact through the vfs

• Carefully read through the files in kern/vfs
• Carefully read through vnode code – abstract

representation of a file provided by OS/161

File System Calls – close

int close(int fd)

•Takes in the file descriptor of the file to close.

•Things to consider:
• Multiple processes may reference the same opened file

File System Calls – read and write

int read(int fd, void *buf, size_t buflen)

int write(int fd, const void *buf, size_t nbytes)

•Read and write to the file given by file descriptor

•Use of uio and iovec for actual reading and writing
• Look through loadelf.c to see how to use uio and iovec

• uio represents a user or kernel space buffer
• iovec are used for keeping track of I/O data in the kernel

Process Management

•Need to keep track of running processes

• Identified by unique integer called process id (pid)

•Things to consider:
• What data structure will you use?

• What will data structure entries hold?
• Hint: address space, file tables, etc.

• How will pids be uniquely assigned?
• How will it be synchronized?

Process System Calls – fork

pid_t fork(void)

•Create a new process & thread, identical to caller

•Child returns 0 and the parent returns child’s pid

•Things to consider:
• How to duplicate process related state?

• How to make child return 0 and behave exactly like parent?
• Check out mips_usermode() and enter_forked_process()

• When a process makes a system call, where how does it
know where to return?
• Hint: Save trapframe

Process System Calls – exec

int execv(const char *program, char **args)

•Replace currently executing program with newly
loaded program image

•program: name of program to be run

•args: array of 0-terminated strings

•args: array should be terminated by a NULL pointer

Process System Calls – exec

• execv() is similar to runprogram() in
syscall/runprogram.c.

•Remember to the shell after exec works!

•Most difficult part is passing arguments correctly
• User passes in pointers to the arguments – need to copyin

both the pointers and strings.

• Then correctly format and copyout the arguments onto the
process’s stack.
• Need to adjust pointers so they point to the copied strings

• Remember to word align pointers!

• Look at vm/copyinout.c

Process System Calls – exec

Exec could set up the process’ stack to look like this
example of passing in 2 arguments “ls foo”

Process System Calls – waitpid

pid_t waitpid(pid_t pid, int *status, int options)

•Wait for process specified by pid to exit

•Returns pid of process waiting on

• status: return parameter for exit status

•Closely tied to pid management and synchronization

•Things to consider:
• How can you make a parent wait for a child?

• What happens if a child tries to wait for its parent?

• You may need to add data to stuct proc to support this

Process System Calls – _exit

void _exit(int exitcode)

•Causes current thread to exit

•Closely tied to pid management and synchronization

•Things to consider:
• What are resources we need to free?

• Do we always free all resources?
• When do we free the process itself?

• What about the exit code?
• Don’t forget kill_curthread()

General Advice

•Remember to check if kmalloc fails!

•Read syscall man pages and pay careful attention to
the many errors that can be thrown

•Errors should be handled gracefully – do not crash
the OS

•You may need to increase your system’s memory
(again) in order for fork and exec to work

References

•Slides / Tutorial pages from Harvard:
• http://www.eecs.harvard.edu/~margo/cs161/resources/s

ections/2013-MMM-ASST2.pdf
• http://www.eecs.harvard.edu/~margo/cs161/resources/s

ections/2013-mxw-a2.pdf

