
	
	

Mobile	OS	Security	

CSE	451	–	December	2,	2016	
	

Franziska	(Franzi)	Roesner		
franzi@cs.washington.edu	

Today’s	Goals	

•  Introduce	some	OS	security	concepts	through	a	
case	study	of	mobile	OSes,	particularly	Android.	

•  Along	the	way,	highlight	that	it	matters	how	these	
systems	interface	with	people	(users	&	devs).	

12/5/16	 CSE	451	-	Guest	Lecture	 2	

Smartphone	(In)Security	

Users	accidentally	install	malicious	applications.	

12/5/16	 3	CSE	451	-	Guest	Lecture	

Smartphone	(In)Security	

Even	legitimate	applications	exhibit	questionable	behavior.	

12/5/16	 4	

Hornyack	et	al.:	43	of	110	Android	
applications	sent	location	or	phone	ID	to	
third-party	advertising/analytics	servers.	

CSE	451	-	Guest	Lecture	

Malware	in	the	Wild	
Android	malware	is	growing.	

12/5/16	 CSE	451	-	Guest	Lecture	 5	

What	does	Mobile	Malware	Do?	

•  Unique	to	phones:	
–  Premium	SMS	messages		
–  Identify	location	
– Record	phone	calls	
–  Log	SMS		

•  Similar	to	desktop/PCs:		
–  Connects	to	botmasters	
–  Steal	data	
–  Phishing		
– Malvertising		

12/5/16	 CSE	451	-	Guest	Lecture	 6	

Mobile	Malware	Examples	

•  DroidDream	(Android)	
–  Over	58	apps	uploaded	to	Google	app	market	

–  Conducts	data	theft;	send	credentials	to	attackers		

•  Zitmo	(Symbian,BlackBerry,Windows,Android)	
–  Poses	as	mobile	banking	application	

–  Captures	info	from	SMS	–	steal	banking	2nd	factors	

–  Works	with	Zeus	botnet		

•  Ikee	(iOS)		
–  Worm	capabilities	(targeted	default	ssh	password)		

–  Worked	only	on	jailbroken	phones	with	ssh	installed	

12/5/16	 CSE	451	-	Guest	Lecture	 7	

Mobile	Malware	Examples	
“ikee	is	never	going	to	give	you	up”	

12/5/16	 CSE	451	-	Guest	Lecture	 8	

(Android)	Malware	in	the	Wild	

What	does	it	do?	
Root	

Exploit	
Remote	Control	 Financial	Charges	 Information	Stealing	

Net	 SMS	 Phone	
Call	

SMS	 Block	
SMS	

SMS	 Phone	#	 User	
Account	

#	
Families	

20	 27	 1	 4	 28	 17	 13	 15	 3	

#	
Samples	

1204	 1171	 1	 256	 571	 315	 138	 563	 43	

[Zhou	et	al.]	

12/5/16	 CSE	451	-	Guest	Lecture	 9	

Why	all	these	problems	with	mobile	malware?	

Background:	Before	Mobile	Platforms	

Assumptions	in	traditional	OS	(e.g.,	Linux)	design:	
1.  There	may	be	multiple	users	who	don’t	trust	each	other.	
2.  Once	an	application	is	installed,	it’s	(more	or	less)	trusted.	

12/5/16	 CSE	451	-	Guest	Lecture	 10	

Background:	Before	Mobile	Platforms	

Assumptions	in	traditional	OS	(e.g.,	Linux)	design:	
1.  There	may	be	multiple	users	who	don’t	trust	each	other.	
2.  Once	an	application	is	installed,	it’s	(more	or	less)	trusted.	

12/5/16	 CSE	451	-	Guest	Lecture	 11	

Background:	Before	Mobile	Platforms	

Assumptions	in	traditional	OS	(e.g.,	Linux)	design:	
1.  There	may	be	multiple	users	who	don’t	trust	each	other.	
2.  Once	an	application	is	installed,	it’s	(more	or	less)	trusted.	

12/5/16	 CSE	451	-	Guest	Lecture	 12	

Apps	can	do	anything	the	UID	
they’re	running	under	can	do.	

What’s	Different	about	Mobile	Platforms?	

•  Applications	are	isolated	
–  Each	runs	in	a	separate	execution	context	
–  No	default	access	to	file	system,	devices,	etc.	
–  Different	than	traditional	OSes	where	multiple	

applications	run	with	the	same	user	permissions!	
	
•  App	Store:	approval	process	for	applications	
– Market:	Vendor	controlled/Open	
–  App	signing:	Vendor-issued/self-signed	
–  User	approval	of	permissions		

12/5/16	 CSE	451	-	Guest	Lecture	 13	

More	Details:	Android	

•  Based	on	Linux	
•  Application	sandboxes	
–  Applications	run	as																																																															

separate	UIDs,	in																																																																	
separate	processes.	

– Memory	corruption																																																																
errors	only	lead	to																																																																
arbitrary	code	execution	in	the	context	of	the	particular	
application,	not	complete	system	compromise!	

–  (Can	still	escape	sandbox	–	but	must	compromise	Linux	
kernel	to	do	so.)	ß	allows	rooting	

12/5/16	 CSE	451	-	Guest	Lecture	 14	

[Enck	et	al.]	

Rooting	and	Jailbreaking	

•  Allows	user	to	run	applications	with	root	privileges	
–  e.g.,	modify/delete	system	files,	app	management,	CPU	

management,	network	management,	etc.	

•  Done	by	exploiting	vulnerability	in	firmware	to	
install	su	binary.	

•  Double-edged	sword…	

•  Note:	iOS	is	more	restrictive	than	Android	
–  Doesn’t	allow	“side-loading”	apps,	etc.	

12/5/16	 CSE	451	-	Guest	Lecture	 15	

Challenges	with	Isolated	Apps	

So	mobile	platforms	isolate	applications	for	
security,	but…	

1.  Permissions:	How	can	applications	access	
sensitive	resources?	
	 	à	the	rest	of	today’s	lecture	

2.  Communication:	How	can	applications	
communicate	with	each	other?	
	 	à	specific	communication	APIs	(there	may	be		
	 							vulnerabilities	in	how	apps	use	them)	

12/5/16	 CSE	451	-	Guest	Lecture	 16	

(1)	Permission	Granting	Problem	

Smartphones	(and	other	modern	OSes)	try	to	prevent	
such	attacks	by	limiting	applications’	access	to:	
–  System	Resources	(clipboard,	file	system).	
–  Devices	(camera,	GPS,	phone,	…).	

	

Standard	approach:	Ask	the	user.	

How	should	operating	system	
grant	permissions	to	applications?	

12/5/16	 CSE	451	-	Guest	Lecture	 17	

State	of	the	Art	
Prompts	(time-of-use)	

12/5/16	 CSE	451	-	Guest	Lecture	 18	

State	of	the	Art	
Prompts	(time-of-use)	 Manifests	(install-time)	

Disruptive,	which	leads	to	
prompt-fatigue.	

12/5/16	 CSE	451	-	Guest	Lecture	 19	

State	of	the	Art	
Prompts	(time-of-use)	 Manifests	(install-time)	

Out	of	context;	not	
understood	by	users.	

In	practice,	both	are	overly	permissive:		
Once	granted	permissions,	apps	can	misuse	them.	

Disruptive,	which	leads	to	
prompt-fatigue.	

12/5/16	 CSE	451	-	Guest	Lecture	 20	

Are	Manifests	Usable?	

Do	users	pay	attention	to	permissions?	

[Felt	et	al.]	

…	but	88%	of	users	looked	at	reviews.	

12/5/16	 CSE	451	-	Guest	Lecture	 21	

Do	users	understand	the	warnings?	

Are	Manifests	Usable?	
[Felt	et	al.]	

12/5/16	 CSE	451	-	Guest	Lecture	 22	

Do	users	act	on	permission	information?	
	

“Have	you	ever	not	installed	an	app	because	of	permissions?”	

Are	Manifests	Usable?	
[Felt	et	al.]	

12/5/16	 CSE	451	-	Guest	Lecture	 23	

Over-Permissioning	

•  Android	permissions	are	badly	documented.	
•  Researchers	have	mapped	APIs	à	permissions.	
www.android-permissions.org	(Felt	et	al.),	http://pscout.csl.toronto.edu	(Au	et	al.)	

	

[Felt	et	al.]	

12/5/16	 CSE	451	-	Guest	Lecture	 24	

Permission	Re-Delegation	

•  An	application	without	a	permission	gains	
additional	privileges	through	another	application.	

•  Demo	video	
•  Settings	application	is																					 	 	 	 	 	 			

deputy:	has	permissions,	 	 	 	 	 	 											
and	accidentally	exposes																																													
APIs	that	use	those																			 	 	 							
permissions.	

API

Settings

Demo
malware

toggleWifi()	

pressButton(0)	

Permission System

toggleWifi()	

[Felt	et	al.]	

12/5/16	 CSE	451	-	Guest	Lecture	 25	

Android	6.0:	Prompts!	

•  First-use	prompts	for	sensitive	permission	(like	iOS).	
•  Big	change!	Now	app	developers	need	to	check	for	

permissions	or	catch	exceptions.	

12/5/16	 CSE	451	-	Guest	Lecture	 26	

Improving	Permissions:	AppFence	
[Hornyack	et	al.]	

12/5/16	 CSE	451	-	Guest	Lecture	 27	

Let this applica,on
access my loca,on now.

Insight:
A user’s natural UI ac,ons within
an applica,on implicitly carry
permission-gran,ng seman,cs.

12/5/16	 CSE	451	-	Guest	Lecture	 28	

Improving	Permissions:	
User-Driven	Access	Control	

[our	work]	

Let this applica,on
access my loca,on now.

Insight:
A user’s natural UI ac,ons within
an applica,on implicitly carry
permission-gran,ng seman,cs.

12/5/16	 CSE	451	-	Guest	Lecture	 29	

Our study shows:
Many users already believe (52% of 186)
– and/or desire (68%) – that resource access
follows the user-driven access control model.

Improving	Permissions:	
User-Driven	Access	Control	

[our	work]	

New	OS	Primitive:		
Access	Control	Gadgets	(ACGs)	

Approach:	Make	resource-related	UI	elements	first-class	
operating	system	objects	(access	control	gadgets).	
	

•  To	receive	resource	access,	applications	must	embed	a	
system-provided	ACG.	

•  ACGs	allow	the	OS	to	capture	the	user’s	permission	
granting	intent	in	application-agnostic	way.	

12/5/16	 CSE	451	-	Guest	Lecture	 30	

Android	Fragmentation	

•  Many	different	variants	of	
Android	(unlike	iOS)	
– Motorola,	HTC,	Samsung,	…	

•  Less	secure	ecosystem	
–  Inconsistent	or	incorrect	

implementations	
–  Slow	to	propagate	kernel	

updates	and	new	versions	
	

[https://developer.android.com/about/
dashboards/index.html]		

12/5/16	 CSE	451	-	Guest	Lecture	 31	

What	about	iOS?	

•  Apps	are	sandboxed	
•  Encrypted	user	data	
–  See	recent	news…	

•  App	Store	review	process	is	
(maybe)	stricter	
–  But	not	infallible:	e.g.,	see	

Wang	et	al.	“Jekyll	on	iOS:	
When	Benign	Apps	Become	
Evil”	(USENIX	Security	2013)	

•  No	“sideloading”	apps	
–  Unless	you	jailbreak	

12/5/16	 CSE	451	-	Guest	Lecture	 32	

