CSE 451: Operating Systems

Section 10

Project 3 wrap-up, final exam
review



12/5/2013

Final exam review

Disclaimer: This is not guaranteed to be
everything that you need to know for the
final. This is an overview of major topics we

covered in the course.

You are responsible for all the readings and
the slides only up to what we covered in
class.



12/5/2013

Exam Coverage

Lectures: Modules 1 —-18

* Everything from the intro to reliable storage is
fair game (will not include Networking/RPC/DFS/
VMMs)

* Chapters 1 — 14 in the textbook

Extra Readings: 2 questions from extra
readings

Projects: 2 questions based on the projects



12/5/2013

Major Topics

Kernels — Micro, Monolithic, etc
Processes — fork, vfork, execve
User and Kernel level threads
Scheduling

Paging, caching

Memory Management



More Topics

Deadlock

Race conditions and synchronization
variables

File systems

Projects 1 -3

12/5/2013



12/5/2013

Synchronization Variables

Locks, mutexes, semaphores, condition variables and
monitors

* Mutexes
Provide a waiting queue for threads that are waiting on a lock
* Condition Variables

A higher level construct than mutexes. They help manage the
waiting of threads by allowing them to wait until a given condition is
true

Signal and broadcast
* Monitors
Two main different types, Hoare and Mesa monitors.

Provides object like abstraction to synchronization. Manages
condition variables and locks as well as provides methods for
accessing shared memory.

Should be familiar with both types: http://en.wikipedia.org/wiki/
Monitor_(synchronizaSon)



12/5/2013

Thread management

Queues
* Why do thread libraries make use of queues?

Synchronization

* What are the mechanisms for protecting critical

sections, how do they work, and when should
one be used over another?

Preemption

* What is preemption and how does the process
of one thread preempting another work?



12/5/2013

Scheduling

Different scheduling techniques:

* First in first out, round robin, shortest
processing time first, priority, multi-level
feedback queue

* What are the advantages and disadvantages of
each

% Starvation and fairness
* Measure of response time

What do most current systems use?



12/5/2013

Threads

Difference between user and kernel level
threads

* Can user level threads run across multiple
processors?

Performance differences between user / kernel
level threads

What are the benefits of using kernel over user
level threads, visa-versa

* Kernel level threads allow for scheduling across
multiple processors

* User level threads are lightweight and run in user
space



12/5/2013

Kernels

Different types of OS kernels
* Micro vs Monolithic
* What are the benefits of each
* What operations need to happen in the kernel
VS user space?
Interactions with hardware
Kernel trap

System calls
Exceptions

10



12/5/2013

Processes

Should know the difference between
processes and threads

What is the difference between fork and
forkv
* Copy on write?

11



12/5/2013

Memory management

Purposes:
* Resource partitioning / sharing

* |solation
* Usability

Paging

Segmentation

12



12/5/2013

Virtual memory

What happens on a virtual memory access?

q3



Virtual memory

What happens on a virtual memory access?

* Address translation: who performs it?

Page table lookup
Translation Lookaside Buffer (TLB)

* Page fault?
Page replacement

Process/queue management

How does all of this overhead pay off?

* Locality! Both temporal (in time) and spatial
(nearby).

12/5/2013

14



Virtual memory

virtual page #

offset

12/5/2013

page frame #

offset

page
frame O

page
frame 1

g Page

Note: Each process
has its own page table!

© 2010 Gribble, Lazowska, Levy, Zahorjan

@l frame 2
page

frame 3

15



Page replacement

Algorithms:

12/5/2013

* Belady, FIFO, LRU, LRU clock / NRU, random,
working set...

* Local vs. global

How/why are any of these better or worse
than the others?

What happens when paging goes wrong?
* Thrashing, 10-year old computers running XP?

16



12/5/2013

Advanced virtual memory

What problem does a TLB address?

What problem do two-level page tables
address?

* What’s the key concept?

17



Advanced virtual memory

What problem does a TLB address?
* Increases speed of virtual address translation

What problem do two-level page tables
address?

* What’s the key concept?

Indirection

12/5/2013 18



12/5/2013

Secondary storage

Memory forms a hierarchy

Different levels of disk abstraction:
* Sectors

* Blocks

* Files

What factor most influences the ways that
we interact with disks?

19



12/5/2013

Secondary storage

Memory forms a hierarchy

Different levels of disk abstraction:
* Sectors

* Blocks

* Files

What factor most influences the ways that
we interact with disks?
X Latency

20



Memory hierarchy

ZERVIEER CPU registers

*YAN=) L1 cache

LAl |2 cache

VIR |3 cache

Xellsy Primary Memory

(M=} Secondary Storage

(R=1=} Tertiary Storage

Each level acts as a cache of lower levels
* (Stats more or less for Core i7 3770)

12/5/2013 © 2010 Gribble, Lazowska, Levy, Zahorjan

A



12/5/2013

File systems

What does a file system give you?
* Useful abstraction for secondary storage
* Organization of data

Hierarchy of directories and files

* Sharing of data

22



12/5/2013

File system internals

Directories
Directory entries

Inodes

Files:

* One inode per file
* Multiple directory entries (links) per file

23



Inode-based file system

Sequence of steps when | run echo “some
text” > /home/jay/file.txt ?
* Open file:

* Write to file:

* Close file:

12/5/2013

24



Inode-based file system

Sequence of steps when | run echo “some
text” > /home/jay/file.txt ?
* Open file:
Get inode for / -> get data block for /
Read directory entry for / -> get inode for /homes
Repeat... -> get data block for file.txt, check permissions
* Write to file:
Modify data block(s) for file.txt in buffer cache
* Close file:

Mark buffer as dirty, release to buffer cache

Kernel flushes dirty blocks back to disk at a later time
12/5/2013 25



