CSE 451: Operating Systems




Kernel/userspace separation

5/2/13

Userspace processes cannot interact directly with
hardware (non-privileged mode)

Attempting to execute a system call instruction
causes a trap to the kernel (privileged mode), which
handles the request

Why is it necessary to have both privileged and non-
privileged mode?

How is privileged mode enforced, and how do virtual
machine monitors work inside this model?



5/2/13

|O from userspace

Userspace processes interact with disks and
other devices via open (), read (), write (),

dNnae

Mu

ot

tip

ner system calls

e levels of abstraction: kernel

presents file system to userspace, and
device drivers present a (mostly) unified
interface to kernel code

* What are the benefits and drawbacks of
designing a system in this way?



Monolithic and microkernels

Monolithic kernels encapsulate all aspects of
functionality aside from hardware and user
programs

* Pro: Low communication cost, since everything is in
the kernel’s address space

* Cons: Millions of lines of code, continually
expanding, no isolation between modules, security

Microkernels separate functionality into
separate modules that each expose an API
* Services as servers

* Why? How?

5/2/13



5/2/13

Processes versus threads

Processes have multiple pieces of state
associated with them

* Program counter, registers, virtual memory, open
file handles, mutexes, registered signal handlers, the
text and data segment of the program, and so on

* Total isolation, mediated by the kernel

Threads are “lightweight” versions of processes

* Which pieces of state listed above do threads not
maintain individually?



5/2/13

Process creation

fork (): create and initialize a new process control block

* Copy resources of current process but assign a new address
space

* Callsto fork () return twice—once to parent (with pid of
child process) and once to child

* What makes this system call fast even for large processes?
viork () versus copy-on-write

exec () : stop the current process and begin execution of
a hew one

* Existing process image is overwritten
* No new process is created

* |s there a reason why fork () and exec () are separate
system calls?



5/2/13

Threads

How is a kernel thread different from a userspace
thread?

* Kernel thread: managed by OS, can run on a different
CPU core than parent process

* Userspace thread: managed by process/thread library,
provides concurrency but no parallelism (can’t have two
userspace threads within a process executing
instructions at the same time)

CPU sharing

* Threads share CPU either implicitly (via preemption) or
explicitly via calls to yield ()

* What happens when a userspace thread blocks on 10?



5/2/13

Synchronization

Critical sections are sequences of instructions that
may produce incorrect behavior if two threads
interleave or execute them at the same time

* E.g. the banking example that everyone loves to use

Mutexes are constructs that enforce mutual exclusion

* mutex.lock () /acquire (): wait until no other thread
holds the lock and then acquire it

* mutex.unlock () /release (): release the Locken!

* Mutexes rely on hardware support such as an atomic test-
and-set instruction or being able to disable interrupts
(why?)



Synchronization constructs

Spinlocks are mutexes where 10ck () spinsin a
loop until the lock can be acquired

* High CPU overhead, but no expensive context
switches are necessary

* In what type of scenario are spinlocks useful?

Semaphores are counters that support atomic
increments and decrements

* P (sem): block until semaphore count is positive,
then decrement and continue

* V(sem):increment semaphore count
* How are semaphores different from spinlocks?

5/2/13



5/2/13

Synchronization constructs

Condition variables associated with mutexes allow
threads to wait for events and to signal when they
have occurred

¥ cv.wait (mutex* m):release mutex m and block until the

condition variable cv is signaled. m will be held when
wait () returns

* cv.signal (): unblock one of the waiting threads. m must
be held during the call but released sometime afterward

* Why is it necessary to associate a mutex with a condition
variable?

* What happens if signal () is invoked before a call to
wait ()?

10



5/2/13

Monitors

Monitors are souped-up condition variables that support
enter (), exit (), wait (), signal () ,broadcast () routines

When one thread enters a monitor, no other thread can
enter until the first thread exits

The exception is that a thread can wait on a condition

after entering a monitor, permitting another thread to

enter (which will potentially signal and unblock the first

thread)

* Hoare monitors: signal () causes a waiting thread to run
immediately

* Mesa monitors: signal () returns to the caller and a waiting
thread will unblock some time later

11



5/2/13

Deadlock

Is this deadlock? How do we fix it?

Thread 1:
lock(A)
lock(B)
Do_thingl()
unlock(B)
unlock(A)

Thread 2:
lock(B)
lock(C)
Do_thing2()
unlock(C)
unlock(B)

Thread 3:
lock(C)
lock(A)
Do_thing3()
unlock(A)
unlock(C)

12



5/2/13

Deadlock

What is an example of deadlock?

Methods for preventing and avoiding deadlock
* Have threads block until all required locks are available
* Have all threads acquire locks in the same global ordering

* Run banker’s algorithm to simulate what would happen if this
thread and others made maximum requests: no deadlock =
continue, deadlock = block and check again later

Can resolve deadlock by breaking cycles in the
dependency graph: choose a thread, kill it, and release
its locks

* What are the potential problems related to doing this?

i3



5/2/13

Scheduling

Operating systems share CPU time between
processes by context-switching between them

* In systems that support preemption, each process runs

for a certain quantum (time slice) before the OS switches
contexts to another process

* Which process runs next depends on the scheduling
policy

Scheduling policies can attempt to maximize CPU

utilization or throughput or minimize response time,
for example

* There are always tradeoffs between performance and
fairness

14



5/2/13

F
S

Scheduling policies

FO: first in first out

PT: shortest processing time first

RR: round robin

Any of these can be combined with a notion of

P

riority

* How to avoid starvation? Lottery is one option

What are the benefits and drawbacks of each
type of scheduling policy?

15



