CSE 451: Operating Systems

Section 3

System calls, Memory allocation,
WELGHIIES

Library calls versus system calls

Which of the following map to system calls

and which execute purely in userspace?
* strlen (), execvp (), fork(), printf (), clone(),

open (), atoi (), exit ()

unistd.h (generally found under /usr/
include) contains the declarations of many
system calls

* Other library functions rely directly or indirectly
on system calls defined in this header

4/18/13

4/18/13

Adding a system call

The good part: how do we actually add a system
call to the kernel in the version (3.8.3) that we
are using?

* Let’s look at a semi-recent patch to the kernel as an
example

Files to modify/add:

* arch/x86/syscalls/syscall 64.tbl
% include/linux/syscalls.h

% kernel/sys ni.c

* kernel/Makefile

% write: kernel/[your file].c

4/18/13

Adding a system call

Add a simple system call that uses printk ()
to print a value and returns the value as its
exit code

printk ()Sare written to /var/log/messages
and can be printed to the console with the
dmesg cOmMmand

Useful for debugging!

Invoking a system call

Use the syscall() function from userspace to
invoke system calls “directly”

#include <stdio.h> // for printf ()
#finclude <stdlib il s SucuNe
#include <unistd.h> // for syscall ()

int main(int argc, char* argv([]) {
R haoe 1= 2 |
fprintf (stderr, "Usage: %s value\n", argv[0]);

return 1;

}
// number of the newly-added syscall

int syscall number = 314;
int value = atoi(argv[l]):;
int ret = syscall (5ysicanB e u . R
printf ("Return value is %d\n", ret);

return 0;
4/18/18

Userspace memory allocation

In userspace C programs, malloc () and
calloc () allocate memory on the heap and

free () frees it

* libc maintains a free list in the data segment to
facilitate memory allocation

* When a userspace process attempts to allocate
memory and libc has none to give it, libc
increases the size of the data segment via

sbrk () (see man 2 sbrk)
4/18/13

4/18/13

Kernel memory allocation

In the kernel, there are some different use cases

and considerations:

* Some modules allocate and free memory frequently,
whereas others hold memory for long periods of
time

* If the kernel blocks or sleeps when allocating
memory, the performance of other processes will be
impacted

What happens if the kernel attempts to read
uninitialized memory? Unallocated memory?

4/18/13

Kernel memory allocation

kmalloc (): Standard method of allocating
memory within the kernel

* Flags parameter allows caller to specify who will be
using the memory (userspace or kernel) and whether

the call should be allowed to sleep
vmalloc () : Allocates large blocks of virtually
contiguous memory
* Not many use cases require it and furthermore Linus

(a.k.a. the kernel god) disapproves
* Slower than kmalloc ()

4/18/13

Address space mapping

Parts of the kernel are mapped into the address
space of userspace processes for faster access
There are special functions for copying memory
between userspace and kernel space—why is this?

Every user process maps
the same kernel segment

into its address space. This
segment includes a small stack

’ kemel / for executing kernel code, as

segment well as kemnel data structures,
and mappings to directly access

physical memory.

OxFFFFFFFF

OxBFFFFFFF

user .
Each user process has its
Segment a4 OWnN, private user segment.
This segment includes the
process's code, data, heap,
and stack.

4/18/13

Kernel memory safety

copy from user ()
* Copy memory from userspace to kernel space
* Why is there a special function for this?

copy to user|()

* Copy memory from kernel space to userspace

dcces sl

* Check if access to a particular userspace
memory address of a given size is okay

* How would you implement this?

4/18/13

Beyond fsh.c

What is bash doing when you run a process
in the background? How does that differ
from fsh?

How does bash kill its children when it
quits?

How does it “disown” its children so they
aren’t killed when it quits? (see nonhup and

disown)

4/18/13

Uses of fork

When can you imagine using fork that’s not as
a shell?

Long ago the internet super-service daemon
(inetd) sat there waiting for connections on all
ports, and started up the appropriate server on
demand (this saved on precious memory)

Android runs a Linux kernel. It keeps a “warm”
Dalvik VM image that forks to start your app,
avoiding the startup cost of a full Java VM

4/18/13

Signals and ps

You can send arbitrary signals to your processes with
kill, not just SIGKILL.

Add signal handlers with signal() to respond to them.

ps tricks:

* ps —-faux —show all processes as a tree, see who
spawned whom

* ps -melf —show all the threads that belong to a
process

* Hopefully this order of options is easy to remember...
faux and melf.

Makefiles

Makefiles can simplify the development
process for the userspace parts of project 1
—be sure to use them effectively!

Some advanced functionality: patsubst and
suffix-based rules

4/18/13

4/18/13

Makefiles

patsubst (a, b, c):replace occurrences of ainc
with b

Special macros:

* s@: Name of Makefile target

* $<: Name of left-most dependency of Makefile target
* s$~: Names of all Makefile target dependencies

.d files: GCC is capable of scanning source files and
identifying their dependencies. This means
automatic recompilation when dependent files
change without even naming them in rules :)

Sample Makefile

NODEPS=clean

CC=gcc

CFLAGS=-std=gnu99 -g -Wall -00
SRCS=S(shell find . -maxdepth 1 -name "*.c")
DEPFILES=S(patsubst %.c, %.d, S(SRCS))
OBJS=$(patsubst %.c, %.0, $(SRCS))

example: S(OBJS)
$(CC) $(CFLAGS) -0 $@ $(OBIS)

%.0: %.c %.d
S(CC) S(CFLAGS) -0 S@ -c <

%.d: %.c
S(CC) -MM -MT 'S(patsubst %.c, %.0, $<)' S< -MF S@

clean:
rm -f S(OBJS) S(PROGRAMS) S(DEPFILES)

Don't generate dependencies for all rules

ifeq (0, S(words S(findstring S(MAKECMDGOALS), S(NODEPS))))
-include S(DEPFILES)

endif

4/18/13

4/18/13

Sample Makefile

Any .c files in the current directory will be built
automatically and linked into the exampie
executable

If one of the .c files depends on a .h file that
changes, the rules in its .d file will cause it to be
rebuilt when make is next invoked

Project 1 has fairly simple requirements, but
oecoming more familiar with Makefiles will

orove a boon to you in the future

4/18/13

More project 1 advice

Be wary of race conditions in the kernel code that
you write

* What happens if two processes update the count stored
in a task struct at the same time?

* Use atomics in include/asm-generic/atomic.h Or
cmpxchg IN include/asm—-generic/cmpxchg.h
If you use cmpxchg, you’ll need to call it from a loop (why?)

Don’t forget to check that access to a userspace
buffer is okay before attempting to read from it or
write to it

* As a test, try passing a variety of valid and invalid
userspace and kernel addresses to your system call

4/18/13

More project 1 advice

o

Implement the “.” command for the shell
early on so you can have some automated
test cases

Make sure to test a variety of bad inputs to
the shell and verify that none of them cause
it to crash or behave unexpectedly

More project 1 advice

Use the strace command to see if your system
call counts are reasonable

For example, we can check how many times
the echo command calls open ():

$ strace echo "hi" 2>&1 | grep open

open ("/etc/ld.so.cache", O RDONLY|O CLOEXEC) = 3
open ("/1ib64/libeiscicENNCINEBSNINEGICREICOFXEC) = 3
open ("/usr/lib/locale/locale-archive"”, O RDONLY |
O CLOEXEC) = 3

4/18/13

