CSE 451: Operating Systems

Far-reaching implications

Operating systems techniques apply to all

other areas of computer science
* Data structures

* Caching

* Concurrency

* Virtualization

Operating systems support all other areas of
computer science

LS

1/7/15

Course Tools

Assn 0: Any computer with C development
tools (002, attu, your *nix box)

Assn 1: Use the course VM inside an
emulator (VMware, Qemu etc.) on your
computer or a lab computer

Can compile on forkbomb.cs.washington.edu
\ENCE

1/7/15

Course Tools

We’'ll be using the GNU C Compiler (gcc) for
compiling C code in this course, which is
available on pretty much every platform
except Windows (unless through Cygwin)
For an editor, use whatever makes you
comfortable; Emacs, Vim, gedit, Sublime,
and Eclipse are good choices

1/7/15

Discussion board

The discussion board is an invaluable tool;
use it!

Ryan (my TA partner in crime) and | both
receive email alerts whenever there is a new
post, so prefer the discussion board to email
since then the rest of the class can benefit
from your questions as well

For anything non-personal use the discussion
board.

1/7/15

Collaboration

If you talk or collaborate with anybody, or
access any websites for help, name them when

you submit your project

See the course policy for more details

Okay: discussing problems and techniques to
solve them with other students

Not okay: looking at/copying other students’
code

1/7/15

C programming

Most modern operating systems are still
written in C

Why not Java?

* Interpreted Java code runs in a virtual machine, so
what does the VM run on?

Cis precise in terms of
* Instructions (semantics are clear)

* Timing (can usually estimate number of cycles to
execute code)

* Memory (allocations/deallocations are explicit)

C language features

Pointers

Pass-by-value vs. pass-by-reference
Structures

Typedefs (aliasing)

Explicit memory management

LS

Pointers

Lae X = be

fale” w7 — 6/

int* px = &x; // declare a pointer to x
// with value as the
// address of x

dev = V) // change value of x to vy
// (x == 06)

PX = &y; // change px to point to

// v's memory location
// For more review, see the CSE 333 lecture
// and section SHFREIEIE R RS IR S 2 (]2

LS

Function pointers

iRaeR oI ulsSRnmal (Tl X, Char @) | oo
// declare and define a function
int (*pEn)sGinierteliibig R Vi
// declare a pointer to a function
// that takes an int and a char as
// arguments and returns an int
pt fn = Seomcua
// assign pointer to some fn()’s
// location in memory
int a = pt ERNEEEECENE
// set a to the value returned by

// some fn(7, 'p')
1/7/15 10

Case study: signals

extern void (*signal (int, wvoid(*) (int))) (1int);
What is going on here?

signal () is “a function that takes two
arguments, an integer and a pointer to a
function that takes an integer as an argument
and returns nothing, and it (signal ()) returns a
pointer to a function that takes an integer as an
argument and returns nothing.”*

*See this StackOverflow post
1/7/15 11

Case study: signals

We can make this a lot clearer using a
typedef:

// Declare a signal handler prototype
typedef void (*SigHandler) (1nt signum) ;
// signal could then be declared as

extern SigHandler signal (
int signum, SigHandler handler);

Much improved, right?

LS 12

Arrays and pointer arithmetic

Array variables can often be treated like
pointers, and vice-versa:

ke 1m0 [2]| // foo acts like a pointer to
// the beginning of the array
* (foo + 1) . = 550 aEicin-lteteilc R Raisine the

// array 1s set to 5

Don’t use pointer arithmetic unless you have a
good reason to do so

int ** bar = &foo; // Be careful in the ordering
*bar[1l] !'= (*bar)[1l]; // of your dereferencing!

LS q3

Passing by value vs. reference

int doSomething(int x) {
eEnEliol oY - L

}

vold doSomethingElse (1nt* x) {
g = ¢

}

vold foo(void) {

int x = 5;
int y = doSomething(x); // x==5, y==
doSomethingElse (&x) ; - o ——

LS

14

References for returning values

beol LnitEa ailuszic N ShR=e - ke A Rk e e 2
ErrorCodeiNcliddeiiac o=y
// If initialization fails, set an error
// code and return false to indicate
// failure.
1 (G
*error clocc i
return false;
}
// ... Do soncHeHicraslks BikEe iion work
gERebiaal T e

LS

45

Structures

// Define a struct referred to as
// "struct ExampleStruct"
struct ExampleStruct {
int x;
e Y
}: // DonliEeinei= iR -5 Kl

// Declarel anciaiiels ikt tols
struct ExampliciSiiauiesm

// Set the two FileiielsRNe s snE e
S.X —hiss
S.y = 2;

LS

’

16

Typedefs

typedef struct ExampleStruct ExampleStruct;

// Creates an alias “ExampleStruct” for
ANl e bl Beimo] 28T ruet”

OR

typedef struct ExampleStruct {
LT oo
aBahE 57

} ExampleSisuicing:

// Directly typedef as you are declaring
// the Struct

LS

17

Typedefs

ExampleStruct* new es =
(ExampleStruct*) malloc (
sizeof (ExampleStruct));
// Allocates an ExampleStruct struct
// on the heap; new es points to it

New eSiss Sl
// “->" operator dereferences the
// pointer and accesses the field x;
// equivalent to (*new es).x = 2;

LS

18

Explicit memory management

Allocate memory on the heap:

Week =IO (B 2e © S1Ze] ¢
* Note: may fail!
But not necessarily when you would expect...

* Use sizeof () operator to get size

Free memory on the heap:

vold free (zCHic ol

* Pointer argument comes from previous
malloc () call

LS

19

Common C pitfalls (1)

What’s wrong and how can it be fixed?

char* city name (float lat, float long)
char name[100];

return name;

}

LS

20

Common C pitfalls (1)

Problem: returning pointer to local (stack)
memory

Solution: allocate on heap

char* city name(float lat, float long)
// Preferrably allocate a string of
// just the right size

char* name = (char*) malloc(100);

return name;

LS

A

Common C pitfalls (2)

What’s wrong and how can it be fixed?

char* buf = (char*) malloc(32);
s t repiy (oSS ta e

LS

22

Common C pitfalls (2)

Problem: potential buffer overflow

Solution:
static const int kBufferSize = 32;
char* buf = (char*) malloc (kBufferSize);

strncpy (buf, argv[l], kBufferSize);

Why are buffer overflow bugs dangerous?

LS 23

Common C pitfalls (3)

What’s wrong and how can it be fixed?

char* buf = (char*) malloc(32);
st rncpy (louf il K Vo i
printf (Uos SliEeUNaa

buf = (char*) malloc (64);
strncpy (buf, o .S
printf ("% shiniy etk

free (buf) ;

LS

24

Common C pitfalls (3)

Problem: memory leak

Solution:

char* buf = (char*) malloc(32);
strncpy (buf, "hello", 32);
print £ (% s mEtae ki

free (buf) ;

buf = (char*) malloc(64);

LS

25

Common C pittalls (4)

What’s wrong (besides ugliness) and how
can it be fixed?

char foo[2];
foo[0O] = '"H';
fool [1]
printf (" SsShnEReE)

LS

26

Common C pitfalls (4)

Problem: string is not NULL-terminated

Solution:
char foo[3];
foo[0] = '"H';
foo 1 |1 =i
etz = YN0 ¢
printf (%ss \nliCiRe e

Easier way: char* foo = "Hi”;

LS

27

Common C pitfalls (5)

Another bug in the previous examples?

Not checking return value of system calls /
library calls!

char* buf =t (g SRR =N NR7EE
1f (!buf) {
fprintf (stderr, "error!\n");:
exit (1) ;
}
strncpy (buf, argv[l], BUF SIZE) ;

LS

28

1/7/15

Project O

Description is on course web page
Due Friday January 16th, 11:59pm

Work individually

* Remaining projects are in groups of 2. When you
have found a partner, one of you should email
the course staff with your two names and cse
net id’s

AS

LS

Project 0 goals

Get re-acquainted with C programming

Practice working in C / Linux development
environment

Create data structures for use in later
projects

30

LS

Valgrind

Helps find all sorts of memory problems

* Lost pointers (memory leaks), invalid references,
double frees

Simple to run:
* valgrind ./myprogram

* Look for “definitely lost,” “indirectly lost” and
“possibly lost” in the LEAK SUMMARY

Manual:
% http://valgrind.org/docs/manual/manual.html

3i

Project 0 memory leaks

Before you can check the queue for memory leaks, you

should probably add a queue destroy function:
volid queue destroy (queue* q) {
queue_liﬁk* Cllkiay:
queue link* next;
a e i= OLL) |
cur = g->head;
while (cur) {

next = cur—->next;
free (cur) ;
cur = next;

}

freecichN

}
}

LS

32

Project 0 testing

The test files in the skeleton code are
incomplete

* Make sure to test every function in the interface
(the .h file)

* Make sure to test corner cases

Suggestion: write your test cases first

LS 33

1/7/15

Project 0 tips

Part 1: queue
* First step: improve the test file
* Then, use valgrind and gdb to find the bugs

Part 2: hash table
* Write a thorough test file
* Perform memory management carefully

You'll lose points for:
* Leaking memory
* Not following submission instructions

Use the discussion board for questions about the code

34

