
1

CSE 451: Operating Systems
 Winter 2015

Module 10
Scheduling

Mark Zbikowski
mzbik@cs.washington.edu

Allen Center 476

© 2013 Gribble, Lazowska, Levy, Zahorjan

© 2013 Gribble, Lazowska, Levy, Zahorjan 2

Scheduling

•  In discussing processes and threads, we talked about
context switching
–  an interrupt occurs (device completion, timer interrupt)
–  a thread causes a trap or exception
–  may need to choose a different thread/process to run

•  We glossed over the choice of which process or
thread is chosen to be run next
–  “some thread from the ready queue”

•  This decision is called scheduling
•  scheduling is a policy
•  context switching is a mechanism

2

© 2013 Gribble, Lazowska, Levy, Zahorjan 3

Classes of Schedulers

•  Batch
–  Throughput / utilization oriented
–  Example: audit inter-bank funds transfers each night, Pixar rendering,

Hadoop/MapReduce jobs
•  Interactive

–  Response time oriented
–  Example: attu.cs

•  Real time
–  Deadline driven
–  Example: embedded systems (cars, airplanes, etc.)

•  Parallel
–  Speedup-driven
–  Example: “space-shared” use of a 1000-processor machine for large

simulations

We’ll be talking primarily about interactive schedulers

© 2013 Gribble, Lazowska, Levy, Zahorjan 4

Multiple levels of scheduling decisions
•  Long term

–  Should a new “job” be “initiated,” or should it be held?
•  typical of batch systems
•  what might cause you to make a “hold” decision?

•  Medium term
–  Should a running program be temporarily marked as non-

runnable (e.g., swapped out)?
•  Short term

–  Which thread should be given the CPU next? For how long?
–  Which I/O operation should be sent to the disk next?
–  On a multiprocessor:

•  should we attempt to coordinate the running of threads from the
same address space in some way?

•  should we worry about cache state (processor affinity)?

3

© 2013 Gribble, Lazowska, Levy, Zahorjan 5

Scheduling Goals I: Performance

•  Many possible metrics / performance goals (which
sometimes conflict)
–  maximize CPU utilization
–  maximize throughput (requests completed / s)
–  minimize average response time (average time from
submission of request to completion of
response)

–  minimize average waiting time (average time from
submission of request to start of execution)

–  minimize energy (joules per instruction) subject to
some constraint (e.g., frames/second)

© 2013 Gribble, Lazowska, Levy, Zahorjan 6

Scheduling Goals II: Fairness

•  No single, compelling definition of “fair”
–  How to measure fairness?

•  Equal CPU consumption? (over what time scale?)
–  Fair per-user? per-process? per-thread?
–  What if one process is CPU bound and one is I/O bound?

•  Sometimes the goal is to be unfair:
–  Explicitly favor some particular class of requests (priority

system), but…
–  avoid starvation (be sure everyone gets at least some

service)

4

© 2013 Gribble, Lazowska, Levy, Zahorjan 7 7

The basic situation

•••

•••

Schedulable units Resources

Scheduling:
-  Who to assign each resource to
-  When to re-evaluate your

decisions

© 2013 Gribble, Lazowska, Levy, Zahorjan 8

When to assign?
•  Pre-emptive vs. non-preemptive schedulers

–  Non-preemptive
•  once you give somebody the green light, they’ve got it until they

relinquish it
–  an I/O operation
–  allocation of memory in a system without swapping

–  Preemptive
•  you can re-visit a decision

–  setting the timer allows you to preempt the CPU from a thread even if it
doesn’t relinquish it voluntarily

–  in any modern system, if you mark a program as non-runnable, its memory
resources will eventually be re-allocated to others

•  Re-assignment always involves some overhead
–  Overhead doesn’t contribute to the goal of any scheduler

•  We’ll assume “work conserving” policies
–  Never leave a resource idle when someone wants it

•  Why even mention this? When might it be useful to do something else?

5

© 2013 Gribble, Lazowska, Levy, Zahorjan 9

Before we look at specific policies

•  There are some simple but useful “laws” to know
about …

•  The Utilization Law: U = X * S

–  Where U is utilization, X is throughput (requests per second),
and S is average service requirement

•  Obviously true
•  This means that utilization is constant, independent of the

schedule, so long as the workload can be processed

© 2013 Gribble, Lazowska, Levy, Zahorjan 10

•  Little’s Law: N = X * R
–  Where N is average number in system, X is throughput, and

R is average response time (average time in system)
•  This means that better average response time implies fewer in

system, and vice versa
–  Proof:

•  Let W denote the total time-in-system accumulated by all
customers during a time interval of length T

•  The average number of requests in the system N = W / T
•  If C customers complete during that time period, then the

average contribution of each completing request R = W / C
•  Algebraically, W/T = C/T * W/C.
•  Thus, N = X * R

6

© 2013 Gribble, Lazowska, Levy, Zahorjan 11

(Not quite a law – requires some assumptions)
•  Response Time at a single server under FCFS

scheduling: R = S / (1-U)
–  Clearly, when a customer arrives, her response time will be

the service time of everyone ahead of her in line, plus her
own service time: R = S * (1+A)

•  Assumes everyone has the same average service time
–  Assume that the number you see ahead of you at your

instant of arrival is the long-term average number in line; so
R = S * (1+N)

–  By Little’s Law, N = X * R
–  So R = S * (1 + X*R) = S + S*X*R = S / (1 – X*S)
–  By the Utilization Law, U = X*S
–  So R = S / (1-U)
–  And since N = X*R, N = U / (1-U)

© 2013 Gribble, Lazowska, Levy, Zahorjan 12

7

© 2013 Gribble, Lazowska, Levy, Zahorjan 13

© 2013 Gribble, Lazowska, Levy, Zahorjan 14

•  Kleinrock’s Conservation Law for priority scheduling:

Σp Up * Rp = constant
–  Where Up is the utilization by priority level p and Rp is the

time in system of priority level p
•  This means you can’t improve the response time of one class

of task by increasing its priority, without hurting the response
time of at least one other class

8

© 2013 Gribble, Lazowska, Levy, Zahorjan 15

Algorithm #1: FCFS/FIFO

•  First-come first-served / First-in first-out (FCFS/FIFO)
–  schedule in the order that they arrive
–  “real-world” scheduling of people in (single) lines

•  supermarkets, McD’s, Starbucks …
–  jobs treated equally, no starvation

•  In what sense is this “fair”?

•  Sounds perfect!
–  in the real world, when does FCFS/FIFO work well?

•  even then, what’s it’s limitation?
–  and when does it work badly?

© 2013 Gribble, Lazowska, Levy, Zahorjan 16

FCFS/FIFO example

•  Suppose the duration of A is 5, and the durations of B
and C are each 1
–  average response time for schedule 1 (assuming A, B, and

C all arrive at about time 0) is (5+6+7)/3 = 18/3 = 6
–  average response time for schedule 2 is (1+2+7)/3 = 10/3 =

3.3
–  consider also “elongation factor” – a “perceptual” measure:

•  Schedule 1: A is 5/5, B is 6/1, C is 7/1 (worst is 7, ave is 4.7)
•  Schedule 2: A is 7/5, B is 1/1, C is 2/1 (worst is 2, ave is 1.5)

Job A B C

C B Job A

time
1

2

9

© 2013 Gribble, Lazowska, Levy, Zahorjan 17

•  Average response time can be lousy
–  small requests wait behind big ones

•  May lead to poor utilization of other resources
–  if you send me on my way, I can go keep another resource

busy
–  FCFS may result in poor overlap of CPU and I/O activity

•  E.g., a CPU-intensive job prevents an I/O-intensive job from
doing a small bit of computation, thus preventing it from going
back and keeping the I/O subsystem busy

•  Note: The more copies of the resource there are to
be scheduled, the less dramatic the impact of
occasional very large jobs (so long as there is a
single waiting line)
–  E.g., many cores vs. one core

FCFS/FIFO drawbacks

© 2013 Gribble, Lazowska, Levy, Zahorjan 18

Algorithm #2: SPT/SJF

•  Shortest processing time first / Shortest job first (SPT/
SJF)
–  choose the request with the smallest service requirement

•  Provably optimal with respect to average response
time
–  Why do we care about “provably optimal”?

10

© 2013 Gribble, Lazowska, Levy, Zahorjan 19

SPT/SJF optimality – The interchange argument

tk
sf sg

tk+sf tk+sf+sg

•  In any schedule that is not SPT/SJF, there is some
adjacent pair of requests f and g where the service time
(duration) of f, sf, exceeds that of g, sg

•  The total contribution to average response time of f and
g is 2tk+2sf+sg

•  If you interchange f and g, their total contribution will be
2tk+2sg+sf, which is smaller because sg < sf

•  If the variability among request durations is zero, how
does FCFS compare to SPT for average response
time?

© 2013 Gribble, Lazowska, Levy, Zahorjan 20

•  It’s non-preemptive
–  So?

•  … but there’s a preemptive version – SRPT (Shortest
Remaining Processing Time first) – that accommodates
arrivals (rather than assuming all requests are initially
available)

•  Sounds perfect!
–  what about starvation?
–  can you know the processing time of a request?
–  can you guess/approximate? How?

SPT/SJF drawbacks

11

© 2013 Gribble, Lazowska, Levy, Zahorjan 21

Algorithm #3: RR

•  Round Robin scheduling (RR)
–  Use preemption to offset lack of information about execution times

•  I don’t know which one should run first, so let’s run them all!
–  ready queue is treated as a circular FIFO queue
–  each request is given a time slice, called a quantum

•  request executes for duration of quantum, or until it blocks
–  what signifies the end of a quantum?

•  time-division multiplexing (time-slicing)
–  great for timesharing

•  no starvation

•  Sounds perfect!
–  how is RR an improvement over FCFS?
–  how is RR an improvement over SPT?
–  how is RR an approximation to SPT?

© 2013 Gribble, Lazowska, Levy, Zahorjan 22

RR drawbacks

•  What if all jobs are exactly the same length?
–  What would the pessimal schedule be (with average

response time as the measure)?

•  What do you set the quantum to be?
–  no value is “correct”

•  if small, then context switch often, incurring high overhead
•  if large, then response time degrades

•  Treats all jobs equally
•  if I run 100 copies of SETI@home, it degrades your service
•  how might I fix this?

12

© 2013 Gribble, Lazowska, Levy, Zahorjan 23

Algorithm #4: Priority

•  Assign priorities to requests
–  choose request with highest priority to run next

•  if tie, use another scheduling algorithm to break (e.g., RR)
–  Goal: non-fairness (favor one group over another)

•  Abstractly modeled (and usually implemented) as
multiple “priority queues”
–  put a ready request on the queue associated with its priority

•  Sounds perfect!

© 2013 Gribble, Lazowska, Levy, Zahorjan 24

Priority drawbacks

•  How are you going to assign priorities?

•  Starvation
–  if there is an endless supply of high priority jobs, no low-

priority job will ever run

•  Solution: “age” threads over time
–  increase priority as a function of accumulated wait time
–  decrease priority as a function of accumulated processing

time
–  many ugly heuristics have been explored in this space

13

© 2013 Gribble, Lazowska, Levy, Zahorjan 25

Program behavior and scheduling

•  An analogy:
–  Say you're at the airport waiting for a flight
–  There are two identical ATMs:

•  ATM 1 has 3 people in line
•  ATM 2 has 6 people in line

–  You get into the line for ATM 1
–  ATM 2's line shrinks to 4 people
–  Why might you now switch lines, preferring 5th in line for

ATM 2 over 4th in line for ATM 1?

© 2013 Gribble, Lazowska, Levy, Zahorjan 26

Residual Life

• Given that a job has already executed for X seconds,
how much longer will it execute, on average, before
completing?

Residual
Life

Time Already Executed

Give priority to new jobs

Round robin

Give priority to old jobs

Residual Life

14

© 2013 Gribble, Lazowska, Levy, Zahorjan 27

Multi-level Feedback Queues (MLFQ)

•  It’s been observed that workloads tend to have
increasing residual life – “if you don’t finish quickly,
you’re probably a lifer”

•  This is exploited in practice by using a policy that
discriminates against the old (with apologies to the
EEOC)

•  MLFQ:
–  there is a hierarchy of queues
–  there is a priority ordering among the queues
–  new requests enter the highest priority queue
–  each queue is scheduled RR
–  requests move between queues based on execution history

© 2013 Gribble, Lazowska, Levy, Zahorjan 28

UNIX scheduling

•  Canonical scheduler is pretty much MLFQ
–  3-4 classes spanning ~170 priority levels

•  timesharing: lowest 60 priorities
•  system: middle 40 priorities
•  real-time: highest 60 priorities

–  priority scheduling across queues, RR within
•  process with highest priority always run first
•  processes with same priority scheduled RR

–  processes dynamically change priority
•  increases over time if process blocks before end of quantum
•  decreases if process uses entire quantum

•  Goals:
–  reward interactive behavior over CPU hogs

•  interactive jobs typically have short bursts of CPU

15

© 2013 Gribble, Lazowska, Levy, Zahorjan 29

Scheduling the Apache web server SRPT

•  What does a web request consist of? (What’s it trying
to get done?)

•  How are incoming web requests scheduled, in
practice?

•  How might you estimate the service time of an
incoming request?

•  Starvation under SRPT is a problem in theory – is it a
problem in practice?
–  “Kleinrock’s conservation law”

(Work by Bianca Schroeder and Mor Harchol-Balter at CMU)

© 2012 Gribble, Lazowska, Levy, Zahorjan 30 © 2003 Bianca Schroeder & Mor Harchol-Balter, CMU

16

© 2013 Gribble, Lazowska, Levy, Zahorjan 31

Summary

•  Scheduling takes place at many levels
•  It can make a huge difference in performance

–  this difference increases with the variability in service
requirements

•  Multiple goals, sometimes conflicting
•  There are many “pure” algorithms, most with some

drawbacks in practice – FCFS, SPT, RR, Priority
•  Real systems use hybrids that exploit observed

program behavior
•  Scheduling is still important, and there are still new

angles to be explored – particularly in large-scale
datacenters for reasons of cost and energy

