
1

CSE 451: Operating Systems
Winter 2015

Module 1

Course Introduction

Gary Kimura
garyki@cs.washington.edu

 Mark Zbikowski
mzbik@cs.washington.edu

© 2013 Gribble, Lazowska, Levy, Zahorjan 1

© 2013 Gribble, Lazowska, Levy, Zahorjan
 2

Today’s agenda

•  Administrivia
–  Course overview

•  course staff
•  general structure
•  the text(s)
•  policies
•  your to-do list

•  OS overview
–  Trying to make sense of the topic

2

© 2013 Gribble, Lazowska, Levy, Zahorjan
 3

Course overview

•  Operationally, everything you need to
know will be on the course web page:

 http://www.cs.washington.edu/451/

•  Or on the course email and email archive:
 TBD

•  Or on the course discussion board:
 TBD

© 2013 Gribble, Lazowska, Levy, Zahorjan
 4

But to tide you over for the next hour …

•  Course staff
–  Mark Zbikowski
–  Gary Kimura
–  Michael Johnson
–  Ryan McMahon

•  General Course Structure
–  Read the text prior to class (really important)
–  Homework exercises to motivate reading by non-saints
–  Sections will focus on projects
–  You're paying for interaction. We lecture for 40+ minutes

and I expect YOU to ask questions. If you don’t, I will ask
YOU questions.

3

© 2013 Gribble, Lazowska, Levy, Zahorjan
 5

•  The text

•  The text
–  Really outstanding – written by current experts

–  Allows you to actually figure out how things work
–  Way better (and way less expensive) than any alternative

–  First Second edition – still has typos
–  Try not to resent this; help the authors debug it

–  Think of it as helping you to understand, and dig deeper
than, the lecture, section, and project material

•  Other resources
–  Many online; some of them are essential

•  Policies
–  Collaboration vs. cheating
–  Projects: late policy

© 2013 Gribble, Lazowska, Levy, Zahorjan
 6

4

© 2013 Gribble, Lazowska, Levy, Zahorjan
 7

•  Projects
–  Project 0: a C warmup – individual assignment
–  Projects 1-3: significant OS “internals” projects to be done in

teams of 2
–  Adding a system call
–  Building a thread package
–  Modifying the file system

–  You’re likely to be happier if you form a team on your own
than if we form one for you!

–  You’ll need to do this over the weekend
–  Project 1 will begin next Friday
–  We’ll ask for your input by Sunday night and create teams as

needed

© 2013 Gribble, Lazowska, Levy, Zahorjan
 8

•  Your to-do list …
–  Please read the entire course web thoroughly, today
–  Be sure you’re on the cse451 email list, and check your

email daily
–  You should have received email over the weekend!
–  Be sure your “@uw” email is being forwarded!

–  Please keep up with the reading
–  Homework 1 (reading) is posted on the web now

–  Due at the start of class Friday
–  Project 0 (“warmup”) is posted on the web now

–  Will be discussed in section Thursday
–  Due at the end of the day next Friday

–  Begin coming up with a 2-person team for Projects 1-3

5

© 2013 Gribble, Lazowska, Levy, Zahorjan
 9

•  Course registration
–  If you’re going to drop, please do it soon!
–  If you want to get into the class, be sure you’ve registered

with the advisors
–  They run the show
–  I have a registration sheet here!

© 2013 Gribble, Lazowska, Levy, Zahorjan
 10

More about 451

•  This is really two “linked” classes:
–  A classroom/textbook part (mainly run by Mark)
–  A project part (mainly the TAs and Gary)

•  In a perfect world, we would do this as a two-quarter sequence
–  The world isn’t perfect … and CS majors have too many required

courses as it is.
•  By the end of the course, you’ll see how it all fits together!

–  There will be a lot of work. Do not start projects late.
–  You’ll learn a lot, and have a ton of fun
–  In the end, you’ll understand much more deeply how computer

systems work
•  “There is no magic”

6

© 2013 Gribble, Lazowska, Levy, Zahorjan 11

•  In this class you will learn:
–  what are the major components of most OS’s?
–  how are the components structured?
–  what are the most important (most common) interfaces?
–  what policies are typically used in an OS?
–  what algorithms are used to implement these policies?

•  Philosophy
–  You may not ever build an OS
–  But as a computer scientist or computer engineer you need to

understand the foundations
–  Most importantly, operating systems exemplify the sorts of

engineering design tradeoffs that you’ll need to make throughout your
careers – compromises among and within cost, performance,
functionality, complexity, schedule …

–  We want you will love this course!
–  We want you to remember it in 5 years as one that paid off!

© 2013 Gribble, Lazowska, Levy, Zahorjan
 12

What is an Operating System?

•  Answers:
–  I don't know.
–  Nobody knows.
–  The book claims to know – read Chapter 1.
–  They’re programs – big hairy programs

•  The Linux source you'll be compiling has over 1.7M lines of C
•  Windows has way, way more… NTFS for Windows 8 was over

800K itself.

7

© 2013 Gribble, Lazowska, Levy, Zahorjan
 13

What is an Operating System?

•  Answers:
–  I don't know.
–  Nobody knows.
–  The book claims to know – read Chapter 1.
–  They’re programs – big hairy programs

–  The Linux source you'll be compiling has over 1.7M lines of C

Okay. What are some goals of an OS?

© 2013 Gribble, Lazowska, Levy, Zahorjan
 14

The traditional picture

Applications

OS

Hardware

•  “The OS is everything you don’t need to write in order
to run your application”

•  This depiction invites you to think of the OS as a
library; we’ll see that
–  In some ways, it is:

•  all operations on I/O devices require OS calls (syscalls)
–  In other ways, it isn't:

•  you use the CPU/memory without OS calls
•  it intervenes without having been explicitly called

8

“Everything you don’t have to write”
What is Windows?

15

DOS

Application

© John DeTreville, Microsoft Corp.

“Everything you don’t have to write”
What is Windows?

16

DOS Windows

Installer

COM

Printing

TCP/IP Browser

… File system

… …

Application

Application

© John DeTreville, Microsoft Corp.

9

“Everything you don’t have to write”
What is .NET?

17

Internet

Application

© John DeTreville, Microsoft Corp.

“Everything you don’t have to write”
What is .NET?

18

magic

Internet .NET

Device
independence

XML

Identity
& security

Asynchrony Extensibility

… …

Application

eBay FedEx Bank

© John DeTreville, Microsoft Corp.

10

© 2013 Gribble, Lazowska, Levy, Zahorjan
 19

The OS and hardware

•  An OS mediates programs’ access to hardware
resources (sharing and protection)
–  computation (CPU)
–  volatile storage (memory) and persistent storage (disk, etc.)
–  network communications (TCP/IP stacks, Ethernet cards, etc.)
–  input/output devices (keyboard, display, sound card, etc.)

•  The OS abstracts hardware into logical resources and
well-defined interfaces to those resources (ease of use)
–  processes (CPU, memory)
–  files (disk)
–  programs (sequences of instructions)
–  sockets (network)

© 2013 Gribble, Lazowska, Levy, Zahorjan
 20

The text says an OS is …

•  A Referee
–  Mediates resource sharing

•  An Illusionist
–  Masks hardware limitations

•  Glue
–  Provides common services

11

© 2013 Gribble, Lazowska, Levy, Zahorjan
 21

Why bother with an OS?
•  Application benefits

–  programming simplicity
•  see high-level abstractions (files) instead of low-level hardware

details (device registers)
•  abstractions are reusable across many programs

–  portability (across machine configurations or architectures)
•  device independence: 3com card or Intel card?

•  User benefits
–  safety

•  program “sees” its own virtual machine, thinks it “owns” the
computer

•  OS protects programs from each other
•  OS fairly multiplexes resources across programs

–  efficiency (cost and speed)
•  share one computer across many users
•  concurrent execution of multiple programs

© 2013 Gribble, Lazowska, Levy, Zahorjan 22

The major OS issues

•  structure: how is the OS organized?
•  sharing: how are resources shared across users?
•  naming: how are resources named (by users, by programs)?
•  protection: how is one user/program protected from another?
•  security: how is the integrity of the OS and its resources

ensured?
•  performance: how do we make it all go fast?
•  availability: can you always access the services you need?
•  reliability: what happens if something goes wrong (either with

hardware or with a program)?
•  extensibility: can we add new features?
•  communication: how do programs exchange information,

including across a network?

12

© 2013 Gribble, Lazowska, Levy, Zahorjan 23

More OS issues…

•  concurrency: how are parallel activities (computation and I/O)
created and controlled?

•  scale: what happens as demands or resources increase?
•  persistence: how do you make data last longer than program

executions?
•  distribution: how do multiple computers interact with each

other?
•  accounting: how do we keep track of resource usage, and

perhaps charge for it?
•  auditing: can we reconstruct who did what to whom?

There are tradeoffs – not right and wrong!

© 2013 Gribble, Lazowska, Levy, Zahorjan 24

Hardware/Software Changes with Time

•  1960s: mainframe computers (IBM)
•  1970s: minicomputers (DEC)
•  1980s: microprocessors and workstations (SUN),

local-area networking, the Internet
•  1990s: PCs (rise of Microsoft, Intel, Dell), the Web
•  2000s:

–  Internet Services / Clusters (Amazon)
–  General Cloud Computing (Google, Amazon, Microsoft)
–  Mobile/ubiquitous/embedded computing (iPod, iPhone, iPad,

Android)
•  2010s: sensor networks, “data-intensive computing,”

computers and the physical world (“pervasive
computing”)

•  2020: it’s up to you!!

13

© 2012 Gribble, Lazowska, Levy, Zahorjan 25

Progression of concepts and form factors

© Silberschatz, Galvin and Gagne

© 2013 Gribble, Lazowska, Levy, Zahorjan 26

Has it all been discovered?

•  New challenges constantly arise
–  embedded computing (e.g., iPod)
–  sensor networks (very low power, memory, etc.)
–  peer-to-peer systems
–  ad hoc networking
–  scalable server farm design and management (e.g., Google)
–  software for utilizing huge clusters (e.g., MapReduce, Bigtable)
–  overlay networks (e.g., PlanetLab)
–  worm fingerprinting
–  finding bugs in system code (e.g., model checking)

•  Old problems constantly re-define themselves
–  the evolution of smart phones recapitulated the evolution of PCs,

which had recapitulated the evolution of minicomputers, which had
recapitulated the evolution of mainframes

–  but the ubiquity of PCs re-defined the issues in protection and
security, as phones are doing once again

14

© 2013 Gribble, Lazowska, Levy, Zahorjan 27

Protection and security as an example

•  none
•  OS from my program
•  your program from my program
•  my program from my program
•  access by intruding individuals
•  access by intruding programs
•  denial of service
•  distributed denial of service
•  spoofing
•  spam
•  worms
•  viruses
•  stuff you download and run knowingly (bugs, trojan horses)
•  stuff you download and run obliviously (cookies, spyware)

Performance as an example

© 2013 Gribble, Lazowska, Levy, Zahorjan
 28

15

© 2013 Gribble, Lazowska, Levy, Zahorjan
 29

https://www.youtube.com/watch?v=vOvQCPLkPt4

© 2013 Gribble, Lazowska, Levy, Zahorjan 30

An OS history lesson

•  Operating systems are the result of a 60 year long
evolutionary process.

•  We'll follow a bit of their evolution
•  That should help make clear what some of their

functions are, and why

16

© 2013 Gribble, Lazowska, Levy, Zahorjan 31

In the Beginning...

•  1943
–  T.J. Watson (created IBM):

 “ I think there is a world market for maybe five
 computers.”

•  Fast forward … 1950
–  There are maybe 20 computers in the world

•  They were unbelievably expensive
•  Imagine this: machine time is more valuable than person time!
•  Ergo: efficient use of the hardware is paramount

–  Operating systems are born
•  They carry with them the vestiges of these ancient forces

© 2013 Gribble, Lazowska, Levy, Zahorjan 32

The Primordial Computer

CPU

Disk
Memory

Printer

Input Device

17

© 2013 Gribble, Lazowska, Levy, Zahorjan 33

The OS as a linked library

•  In the very beginning…
–  OS was just a library of code that you linked into your

program; programs were loaded in their entirety into
memory, and executed

•  “OS” had an “API” that let you control the disk, control the
printer, etc.

–  Interfaces were literally switches and blinking lights
–  When you were done running your program, you’d leave and

turn the computer over to the next person

•  Recapitulation: Paul Allen writing a bootstrap loader
for the Altair as the plane was landing in New Mexico

© 2013 Gribble, Lazowska, Levy, Zahorjan 34

Asynchronous I/O

•  The disk was really slow
•  Add hardware so that the disk could operate without

tying up the CPU
–  Disk controller

•  Hotshot programmers could now write code that:
–  Starts an I/O
–  Goes off and does some computing
–  Checks if the I/O is done at some later time

•  Upside
–  Helps increase (expensive) CPU utilization

•  Downsides
–  It's hard to get right
–  The benefits are job specific

18

© 2013 Gribble, Lazowska, Levy, Zahorjan 35

The OS as a “resident monitor”

•  Everyone was using the same library of code
•  Why not keep it in memory?

•  While we’re at it, make it capable of loading Program
4 while running Program 3 and printing the output of
Program 2
–  SPOOLing – Simultaneous Peripheral Operations On-Line

•  What new requirements does this impose?

© 2013 Gribble, Lazowska, Levy, Zahorjan 36

IBM 1401

19

© 2013 Gribble, Lazowska, Levy, Zahorjan 37

Multiprogramming

•  To further increase system utilization,
multiprogramming OSs were invented
–  keeps multiple runnable jobs loaded in memory at once
–  overlaps I/O of one job with computing of another

•  while one job waits for I/O completion, another job uses the
CPU

–  Can get rid of asynchronous I/O within individual jobs
•  Life of application programmer becomes simpler; only the OS

programmer needs to deal with asynchronous events
–  How do we tell when devices are done?

•  Interrupts
•  Polling

–  What new requirements does this impose?

© 2013 Gribble, Lazowska, Levy, Zahorjan 38

IBM System 360

20

© 2013 Gribble, Lazowska, Levy, Zahorjan 39

(An aside on protection)

•  Applications/programs/jobs execute directly on the
CPU, but cannot touch anything except “their own
memory” without OS intervention

© 2013 Gribble, Lazowska, Levy, Zahorjan 40

(An aside on concurrency)

•  Transistor density continues to increase (Moore’s
Law), but individual cores aren’t getting faster –
instead, we’re getting more of them (the number
doubles on roughly the old 18-month cycle)

10

100

1,000

10,000

100,000

1,000,000

1985 1990 1995 2000 2005 2010 2015 2020
Year of Introduction

21

© 2013 Gribble, Lazowska, Levy, Zahorjan 41

•  The burden is on the programmer to use an ever
increasing number of cores

•  A lot of this course is about concurrency
–  It used to be a bit esoteric
–  It has now become one of the most important things you'll

learn (in any of our courses)

© 2013 Gribble, Lazowska, Levy, Zahorjan 42

Timesharing

•  To support interactive use, create a timesharing OS:
–  multiple terminals into one machine
–  each user has illusion of entire machine to him/herself
–  optimize response time, perhaps at the cost of throughput

•  Timeslicing
–  divide CPU equally among the users
–  if job is truly interactive (e.g., editor), then can jump between

programs and users faster than users can generate load
–  permits users to interactively view, edit, debug running

programs

22

© 2013 Gribble, Lazowska, Levy, Zahorjan 43

•  MIT CTSS system (operational 1961) was among the
first timesharing systems
–  only one user memory-resident at a time (32KB memory!)

•  MIT Multics system (operational 1968) was the first
large timeshared system
–  nearly all OS concepts can be traced back to Multics!
–  “second system syndrome”

© 2013 Gribble, Lazowska, Levy, Zahorjan 44

•  CTSS as an illustration of architectural and OS
functionality requirements

OS

User program

23

© 2013 Gribble, Lazowska, Levy, Zahorjan 45

•  In early 1980s, a single
timeshared VAX-11/780
(like the one in the Allen
Center atrium) ran
computing for all of CSE.

•  A typical VAX-11/780 was 1
MIPS (1 MHz) and had
1MB of RAM and 100MB of
disk.

–  An Apple iPhone 5s (A7
processor) is 1.3GHz dual-
core (x2600), has 2GB of
RAM (x2000),64GB of flash
(x640), a quad-core GPU
(unheard of).

© 2013 Gribble, Lazowska, Levy, Zahorjan 46

Parallel systems

•  Some applications can be written as multiple parallel
threads or processes
–  can speed up the execution by running multiple threads/

processes simultaneously on multiple CPUs [Burroughs
D825, 1962]

–  need OS and language primitives for dividing program into
multiple parallel activities

–  need OS primitives for fast communication among activities
•  degree of speedup dictated by communication/computation

ratio
–  many flavors of parallel computers today

•  SMPs (symmetric multi-processors)
•  MPPs (massively parallel processors)
•  NOWs (networks of workstations)
•  Massive clusters (Google, Amazon.com, Microsoft)
•  Computational grid (SETI @home)

24

© 2013 Gribble, Lazowska, Levy, Zahorjan 47

Personal computing

•  Primary goal was to enable new kinds of applications
•  Bit mapped display [Xerox Alto,1973]

–  new classes of applications
–  new input device (the mouse)

•  Move computing near the display
–  why?

•  Window systems
–  the display as a managed resource

•  Local area networks [Ethernet]
–  why?

•  Effect on OS?

© 2013 Gribble, Lazowska, Levy, Zahorjan 48

Distributed OS

•  Distributed systems to facilitate use of geographically
distributed resources
–  workstations on a LAN
–  servers across the Internet

•  Supports communications between programs
–  interprocess communication

•  message passing, shared memory
–  networking stacks

•  Sharing of distributed resources (hardware, software)
–  load balancing, authentication and access control, …

•  Speedup isn’t the issue
–  access to diversity of resources is goal

25

© 2013 Gribble, Lazowska, Levy, Zahorjan 49

Client/server computing

•  Mail server/service
•  File server/service
•  Print server/service
•  Compute server/service
•  Game server/service
•  Music server/service
•  Web server/service
•  etc.

© 2013 Gribble, Lazowska, Levy, Zahorjan 50

Peer-to-peer (p2p) systems

•  Napster
•  Gnutella

–  example technical challenge: self-organizing overlay
network

–  technical advantage of Gnutella?
–  er … legal advantage of Gnutella?

26

© 2013 Gribble, Lazowska, Levy, Zahorjan 51

Embedded/mobile/pervasive computing

•  Pervasive computing
–  cheap processors embedded everywhere
–  how many are on your body now? in your

car?
–  cell phones, PDAs, network computers, …

•  Often constrained hardware resources
–  slow processors
–  small amount of memory
–  no disk
–  often only one dedicated application
–  limited power

•  But this is changing rapidly!
–  cf. specs of iPhone 5S earlier!

© 2013 Gribble, Lazowska, Levy, Zahorjan 52

Ad hoc networking

27

© 2013 Gribble, Lazowska, Levy, Zahorjan 53

The major OS issues

•  structure: how is the OS organized?
•  sharing: how are resources shared across users?
•  naming: how are resources named (by users, by programs)?
•  protection: how is one user/program protected from another?
•  security: how is the integrity of the OS and its resources

ensured?
•  performance: how do we make it all go fast?
•  availability: can you always access the services you need?
•  reliability: what happens if something goes wrong (either with

hardware or with a program)?
•  extensibility: can we add new features?
•  communication: how do programs exchange information,

including across a network?

© 2013 Gribble, Lazowska, Levy, Zahorjan 54

More OS issues…

•  concurrency: how are parallel activities (computation and I/O)
created and controlled?

•  scale: what happens as demands or resources increase?
•  persistence: how do you make data last longer than program

executions?
•  distribution: how do multiple computers interact with each

other?
•  accounting: how do we keep track of resource usage, and

perhaps charge for it?
•  auditing: can we reconstruct who did what to whom?

There are tradeoffs – not right and wrong!

