Section 4

CSE 451;
Asst. 1 Preparation



Locks

* lock_acquire(lock)
* Wait until lock is free, then take it

* lock_release(lock)
* Release lock, waking up someone waiting for it (if any)

* At most one lock holder at a time (safety)
* If no one holding, acquire gets lock (progress)

* If all lock holders finish and no higher priority waiters,
waiter eventually gets lock (progress)



Locks — Best Practices

* Lock is initially free
* Always acquire before accessing shared data structure
* Beginning of procedure!

* Always release after finishing with shared data
* End of procedure!
* DO NOT throw lock for someone else to release

* Never access shared data without lock
* Danger!



Lock Implementation -

Multiprocessor

Lock: :acquire() {
disableInterrupts();
spinlock.acquire();
if (value == BUSY) {

waiting.add(myTCB);
suspend(&spinlock);
} else {
value = BUSY;
}
spinlock.release();
enableInterrupts();

Lock::release() {

disableInterrupts();
spinlock.acquire();
if (lwaiting.Empty()) {
next = waiting.remove();
scheduler->makeReady(next);
} else {
value = FREE;
}
spinlock.release();
enableInterrupts();



Spinlocks

* Processor waits in a loop for the lock to become free
* Assumes lock will be held for a short time
* Used to protect CPU scheduler and to implement waiting locks

* Uses read-modify-write instructions

» Atomically read a value from memory, operate on it, and then
write it back to memory

* Intervening instructions prevented in hardware

* Need spinlocks to implement locks on multiprocessor
machines
* Turning off interrupts is not enough!



Condition Variables API

* Waiting inside a critical section
* Called only when holding a lock

e cv_wait(cv, lock)
* Atomically release lock and relinquish processor
* Reacquire the lock when wakened

* cv_signal(cv, lock)
* Wake up a waiter, if any

e cv_broadcast(cv, lock)
* Wake up all waiters, if any



Condition Variables Cont.

* ALWAYS hold lock when calling wait, signal, broadcast
* Condition variable is sync FOR shared state
* ALWAYS hold lock when accessing shared state

* Condition variable is memoryless
* If signal when no one is waiting, no op

* Wait atomically releases lock
* What if wait, then release?
* What if release, then wait?



Condition Variables Semantics

* When a thread is woken up from wait, it may not run
immediately
* Signal/broadcast puts thread(s) on ready list
* When lock is released, anyone might acquire it

* Wait MUST be in a loop

while (need to wait()) {
cv.wait(lock);

}
* Simplifies implementation
* Of condition variables and locks
e Of code that uses condition variables and locks



Wait Channels

* Primitive designed for holding sleeping threads

* Protected by a spinlock, not a lock
* Caller must hold the spinlock for any wchan function call

* wchan_sleep(wc, 1k)
* Put the current thread to sleep and place it in the wchan
* Spinlockis released upon sleep

e wchan_wakeone(wc, 1k)
* Pull a thread off of the wchan and place it in the ready list

* wchan_wakeall(wc, 1k)
* Pull all threads off of the wchan and place them in the ready list



Semaphores

* Semaphores have a non-negative integer value
* P() atomically waits for value to become > o, then decrements
* V() atomically increments value (waking up waiter if needed)

* Semaphores are like integers except:
* Only operations are P and V
* Operations are atomic
* If valueis 1, two P’s will result in value o and one waiter
* Semaphores are useful for
* “Stateful” wait: interrupt handlers, fork/join
* But otherwise don’t use them



General Synchronization Advice

* When to synchronize?
* Modifying global variable in different threads
* Protecting state during forced sleep (i.e. I/O)
* Pick the right primitives
* Locks —Critical sections, modifying shared state
* CVs—Waiting for a condition to be satisfied

* Mix and match when necessary

* Organize and limit conflicts
* Try to modularize code to minimize critical sections
* Keep related synchronization close together

* When in doubt, draw pictures
 Draw graphs of resources and consumers
* List the order in which things are acquired
* Look forinconsistent orders of acquisition and circular dependencies



Thread Creation Read > Thread Exit
sthread_create 0 Y e sthread_exit()
Threa eduler
7 uspe rea
sthre ie

Thread Lifecycle | e

(OtherThread Calls ™, ;/ sthread_join()

sthread_join()

 thread create(thread, func, args)
* Create a new thread to run func(args)
* O5/161: thread fork()

* thread yield()
* Relinquish processor voluntarily

* thread join(thread)
* In parent, wait for forked thread to exit, then return
* OS/161:Your job

* thread exit(ret)
* Quit thread and clean up, wake up joiner if any



Thread Join

* Parent thread creates child thread and calls thread_join()
* Enters the waiting list
* Canonly join on (joinable) child threads
* Cannot join on detached threads
* When a child finishes, thread_join() returns
* Parent enters the ready list
* Canonly join once

* What should happened if...
* The parent joins before the child finishes?
* The parent joins after the child finishes?
* The parent joins just as the child is finishing?
* The parent joins before the child even starts?



sysi61.conf

* Specifies the simulated hardware you are running on
S mainboard ramsize=524288 cpus=1

* cpus specifies number of cores (1 to 4)

* ramsize specifies the amount of memory you have

* Give yourself as much ram as you need. Right now, free does
nothing. Nada. Zip.



