
Multi-Object Synchronization

Multi-Object Programs

• What happens when we try to synchronize
across multiple objects in a large program?

– Each object with its own lock, condition variables

– Is locking modular?

• Performance

• Semantics/correctness

• Deadlock

• Eliminating locks

Synchronization Performance

• A program with lots of concurrent threads can
still have poor performance on a multiprocessor:

– Overhead of creating threads, if not needed

– Lock contention: only one thread at a time can hold a
given lock

– Shared data protected by a lock may ping back and
forth between cores

– False sharing: communication between cores even for
data that is not shared

Topics

• Multiprocessor cache coherence

• MCS locks (if locks are mostly busy)

• RCU locks (if locks are mostly busy, and data is
mostly read-only)

Multiprocessor Cache Coherence

• Scenario:

– Thread A modifies data inside a critical section
and releases lock

– Thread B acquires lock and reads data

• Easy if all accesses go to main memory

– Thread A changes main memory; thread B reads it

• What if new data is cached at processor A?

• What if old data is cached at processor B

Write Back Cache Coherence

• Cache coherence = system behaves as if there is
one copy of the data
– If data is only being read, any number of caches can

have a copy

– If data is being modified, at most one cached copy

• On write: (get ownership)
– Invalidate all cached copies, before doing write

– Modified data stays in cache (“write back”)

• On read:
– Fetch value from owner or from memory

Cache State Machine

Invalid

Exclusive
(writable)

Read-Only Read miss

Write miss

Peer write

Peer write

Peer read Write hit

Directory-Based Cache Coherence

• How do we know which cores have a location
cached?

– Hardware keeps track of all cached copies

– On a read miss, if held exclusive, fetch latest copy and
invalidate that copy

– On a write miss, invalidate all copies

• Read-modify-write instructions

– Fetch cache entry exclusive, prevent any other cache
from reading the data until instruction completes

A Simple Critical Section

// A counter protected by a spinlock

Counter::Increment() {

 while (test_and_set(&lock))

 ;

 value++;

 lock = FREE;

 memory_barrier();

}

A Simple Test of Cache Behavior

Array of 1K counters, each protected by a
separate spinlock

– Array small enough to fit in cache

• Test 1: one thread loops over array

• Test 2: two threads loop over different arrays

• Test 3: two threads loop over single array

• Test 4: two threads loop over alternate
elements in single array

Results (64 core AMD Opteron)

One thread, one array 51 cycles

Two threads, two arrays 52

Two threads, one array 197

Two threads, odd/even 127

Reducing Lock Contention

• Fine-grained locking
– Partition object into subsets, each protected by its own

lock

– Example: hash table buckets

• Per-processor data structures
– Partition object so that most/all accesses are made by

one processor

– Example: per-processor heap

• Ownership/Staged architecture
– Only one thread at a time accesses shared data

– Example: pipeline of threads

What If Locks are Still Mostly Busy?

• MCS Locks

– Optimize lock implementation for when lock is
contended

• RCU (read-copy-update)

– Efficient readers/writers lock used in Linux kernel

– Readers proceed without first acquiring lock

– Writer ensures that readers are done

• Both rely on atomic read-modify-write
instructions

The Problem with Test and Set

Counter::Increment() {
 while (test_and_set(&lock))
 ;
 value++;
 lock = FREE;
 memory_barrier();
}
What happens if many processors try to acquire the

lock at the same time?
– Hardware doesn’t prioritize FREE

The Problem with Test and Test and Set

Counter::Increment() {
 while (lock == BUSY && test_and_set(&lock))
 ;
 value++;
 lock = FREE;
 memory_barrier();
}
What happens if many processors try to acquire the

lock?
– Lock value pings among caches

Test (and Test) and Set Performance

Some Approaches

• Insert a delay in the spin loop

– Helps but acquire is slow when not much contention

• Spin adaptively

– No delay if few waiting

– Longer delay if many waiting

– Guess number of waiters by how long you wait

• MCS

– Create a linked list of waiters using compareAndSwap

– Spin on a per-processor location

Atomic CompareAndSwap

• Operates on a memory word

• Check that the value of the memory word
hasn’t changed from what you expect

– E.g., no other thread did CompareAndSwap first

• If it has changed, return an error (and loop)

• If it has not changed, set the memory word to
a new value

MCS Lock

• Maintain a list of threads waiting for the lock
– Front of list holds the lock
– MCSLock::tail is last thread in list
– New thread uses CompareAndSwap to add to the tail

• Lock is passed by setting next->needToWait = FALSE;
– Next thread spins while its needToWait is TRUE
TCB {
 TCB *next; // next in line
 bool needToWait;
}
MCSLock {
 Queue *tail = NULL; // end of line
}

MCS Lock Implementation
MCSLock::acquire() {
 Queue ∗oldTail = tail;

 myTCB−>next = NULL;
 myTCB−>needToWait = TRUE;
 while (!compareAndSwap(&tail,
 oldTail, &myTCB)) {
 oldTail = tail;
 }
 if (oldTail != NULL) {
 oldTail−>next = myTCB;
 memory_barrier();
 while (myTCB−>needToWait)
 ;
 }
}

MCSLock::release() {
 if (!compareAndSwap(&tail,
 myTCB, NULL)) {
 while (myTCB−>next == NULL)

 ;

myTCB−>next−>needToWait=FALS
E;

 }
}

MCS In Operation

Read-Copy-Update

• Goal: very fast reads to shared data
– Reads proceed without first acquiring a lock
– OK if write is (very) slow

• Restricted update
– Writer computes new version of data structure
– Publishes new version with a single atomic instruction

• Multiple concurrent versions
– Readers may see old or new version

• Integration with thread scheduler
– Guarantee all readers complete within grace period,

and then garbage collect old version

Read-Copy-Update

Read-Copy-Update Implementation

• Readers disable interrupts on entry
– Guarantees they complete critical section in a timely

fashion

– No read or write lock

• Writer
– Acquire write lock

– Compute new data structure

– Publish new version with atomic instruction

– Release write lock

– Wait for time slice on each CPU

– Only then, garbage collect old version of data structure

Non-Blocking Synchronization

• Goal: data structures that can be read/modified
without acquiring a lock
– No lock contention!
– No deadlock!
– (No priority inversion!)

• General method using CompareAndSwap
– Create copy of data structure
– Modify copy
– Swap in new version iff no one else has already posted

a change
– Restart if pointer has changed

Treiber’s Non-Block Stacks

Push(*stack, *entry) {
 pointer_t old_top;
 do {
 old_top = stack->top;
 entry->next.ptr = old_top.ptr;
 } while (!CAS(&(stack->top),
 old_top,
 <entry,
 old_top.count>));
}

entry *Pop(Stack *stack) {
 pointer_t old_top;
 entry *top;
 do {
 old_top = stack->top;
 top = old_top.ptr;
 if (top == NULL)
 return NULL;
 } while (!CAS(&(stack->top),

 old_top,

 <top->next.ptr,

 old_top.count+1>));
 return top;

}

