
Multi-Object Synchronization:
Deadlock

Main Points

• Problems with synchronizing multiple objects

• Definition of deadlock

– Circular waiting for resources

• Conditions for its occurrence

• Solutions for avoiding and breaking deadlock

Large Programs

• What happens when we try to synchronize
across multiple objects in a large program?

– Each object with its own lock, condition variables

– Is concurrency modular?

• Deadlock

• Performance

• Semantics/correctness

Deadlock: Preliminary Definitions

• Resource: any (passive) thing needed by a
thread to do its job (CPU, disk space, memory,
lock)

• Preemptable resource: can be taken away by
OS

– Non-preemptable: must leave with thread

• Starvation: thread waits indefinitely

Deadlock: Definitions

• Deadlock: One or more threads are not making
progress, and never will, due to circular waiting for
resources
– Thread 0 holds lock A and is trying to acquire lock B which

is held by thread 1 which is trying to acquire lock 0

• Deadlock => starvation
– but not vice versa

• (Livelock: threads change state, but don’t make
progress
– cell call drops, and each of you starts calling the other back

as fast as you can)

Circular Waiting

Deadlock Example 1: Two Locks

Thread A

lock1.acquire();

lock2.acquire();

// update objs 1 and 2

lock2.release();

lock1.release();

Thread B

lock2.acquire();

lock1.acquire();

// update objs 1 and 2

lock1.release();

lock2.release();

Example 1 Waiting-for Graph

Thread A

Thread B

Lock 1 Lock 2

Deadlock Example 2: Two Bounded
Buffers

Thread A

buffer1.put(data);

buffer1.put(data);

…

buffer2.get();

buffer2.get();

Thread B

buffer2.put(data);

buffer2.put(data);

…

Buffer1.get();

Buffer1.get();

Example 2 Waiting-for Graph

Thread A

Thread B

Buffer 2

get()
Buffer 1

get()

Deadlock Example 3: Two locks and a
condition variable

Thread A

lock1.acquire();

…

lock2.acquire();

while (need to wait)

 condition.wait(lock2);

lock2.release();

…

lock1.release();

Thread B

lock1.acquire();

…

lock2.acquire();

….

condition.signal(lock2);

lock2.release();

…

lock1.release();

Example 3 Waiting-for Graph

Thread A

Thread B

Lock 2

Lock 1 condition.signal()

Classic Deadlock Example
(Multiple resources)

Famous Abstract Example:
Dining Philosophers

Each philospher needs two chopsticks to eat.
Each grabs chopstick on the right first.

Conditions for Deadlock

• Bounded resources

– If infinite resources, no deadlock!

• No preemption

– Once acquired, resource cannot be taken away

• Hold while waiting

– Don’t (voluntarily) relinquish resource when have
to wait

• Circular “waiting-for” relationships

What to do about deadlock?

• Ensure that one of the four conditions doesn’t
hold
– Detection: build waits-for graph and look for

cycles. If you find one, do something
extraordinary.

– Pseudo-detection: if you make no progress for a
long time, guess there’s deadlock and do
something extraordinary

– Prevention: write code whose structure prevents
at least one of the four conditions from holding

Deadlock Example 1: Two Locks

Thread A

lock1.acquire();

lock2.acquire();

// update objs 1 and 2

lock2.release();

lock1.release();

Thread B

lock2.acquire();

lock1.acquire();

// update objs 1 and 2

lock1.release();

lock2.release();

Famous Abstract Example:
Dining Philosophers

Each philospher needs two chopsticks to eat.
Each grabs chopstick on the right first.

Deadlock Example 3: Two locks and a
condition variable

Thread A

lock1.acquire();

…

lock2.acquire();

while (need to wait)

 condition.wait(lock2);

lock2.release();

…

lock1.release();

Thread B

lock1.acquire();

…

lock2.acquire();

….

condition.signal(lock2);

lock2.release();

…

lock1.release();

Classic Deadlock Example
(Multiple resources)

1: Deadlock Detection (and Breaking)

• Algorithm
– Scan wait-for graph

– Detect cycles

– Fix cycles

• Fix cycles how?
– Remove one thread, reassign its resources

• Requires exception handling code to be very robust

– Roll back actions of one thread
• Databases: all actions are provisional until committed

2: Deadlock Prevention: Lock Ordering

Eliminate one of the four conditions for deadlock

• Lock ordering

– Always acquire locks in the same order

• Example: move file from one directory to another
– Danger: concurrent moves in opposite directions

– Widely used in OS kernels (and concurrent apps!)

• Infinite resources?

– Ex: UNIX reserves a process for the sysadmin to run
“kill”

Waits-for with Lock Ordering

Lock 1 Lock 2 Lock 3 Lock 4 Lock 5

Thread A Thread B

2: Deadlock Prevention: Infinite
Resources

• Infinite resources?

– Example: UNIX reserves a process for the sysadmin to
run “kill”

1.5: Pseudo-detection (or maybe
prevention)

• Design system to release resources and retry if need to wait
– No “wait while holding”
– Could be done by the application itself or by some supporting

layer (e.g., the OS) or by some mix of layers

• Example: (system) timeout and (app) roll-back
– provide an “acquire with timeout” interface for synch objects

• Either you get the resource by the timeout or you stop waiting
without getting it

– application includes recovery code for timeout events
• Can be complicated to do if application has already updated some

state when timeout occurs
– Rollback

1.5: Pseudo-detection (or maybe
prevention)

• Bright idea:
Try to acquire all needed resources in advance

– First acquire all resources

– If a timeout occurs, you haven’t modified any
state, and so rollback is easy!

– On the other hand, it’s impossible to implement
unless you can figure out all the resources you’ll
need before you’ve computed anything

– (and, what about livelock?)

Prevention: Banker’s Algorithm

• Acquiring in advance all resources you might
use is wasteful

• Instead, allow thread to acquire them
dynamically, with no discipline at all

• Costs:

– must declare maximum resources you might
require

– system may delay fulfilling a resource request
even though the resource is available

Prevention: Banker’s Algorithm

• Banker’s algorithm

– Declare maximum resource needs in advance

– Allocate resources dynamically when resource is
needed

• wait if granting request could possibly lead to deadlock

• implies you allocate a requested resource only if you’re
sure you can find a thread schedule that allows all
threads to complete, even if they all request their
maximums

Definitions

• Safe state:
– For every possible sequence of future resource

requests (that respect the declared maximums), it
is possible to eventually grant all requests

• Unsafe state:
– Some sequence of resource requests can result in

deadlock

• Doomed state:
– You’re in deadlock

Possible System States

Bankers’ Algorithm

• Grant request iff result is a safe state

– If a thread makes a request that, if fulfilled, would
cause system to move to an unsafe state, suspend
execution of that thread

– Otherwise, allocate resource to thread now

Banker’s Algorithm Example

• Example:

– 9 units of resource available total

–

– This is a safe state, because we can certainly finish
thread 1 (by pausing other two), then thread 2
then thread 0

Current Allocation Maximum Need

Thread 0 0 3

Thread 1 3 5

Thread 2 4 7

Banker’s Algorithm Example

• Thread 1 requests an additional unit

• Is it granted?

Current Allocation Maximum Need

Thread 0 0 3

Thread 1 3 5

Thread 2 4 7

(9 units total)

Banker’s Algorithm Example

• Thread 0 requests an additional unit

• Is it granted?

Current Allocation Maximum Need

Thread 0 0 3

Thread 1 3 5

Thread 2 4 7

(9 units total)

Banker’s Algorithm: Dining
Philosophers

• n chopsticks in middle of table

• n philosophers, each can take one chopstick at
a time, and up to two total

• When is it ok for lawyer to take a chopstick?

• What if each lawyer could need up to n
chopsticks?

