Concurrency

Motivation

Operating systems need to be able to handle multiple
things at once

— processes, interrupts, background system maintenance
Servers need to handle MTAO

— Multiple connections handled simultaneously

Parallel programs need to handle MTAO

— To achieve better performance

Programs with user interfaces often need to handle MTAO
— To achieve user responsiveness while doing computation

Network and disk bound programs need to handle MTAO
— To hide network/disk latency

But we already covered concurrency...

* Didn’t we learn all about concurrency in CSE
332/3337

— More practice
* Realistic examples

— Design patterns and pitfalls
* Methodology for writing correct concurrent code

— Implementation
e How do threads work at the machine level?

— CPU scheduling

 If multiple threads ready to run, which do we do first?

Definitions

* Athread is a single execution sequence that
represents a separately schedulable task

— Single execution sequence: familiar programming
model

— Separately schedulable: OS can run or suspend a
thread at any time

* Protection is an orthogonal concept

— Can have one or many threads per protection
domain

Threads in the Kernel and at User-level

e Multi-threaded kernel

— multiple threads, sharing kernel data structures, capable of
using privileged instructions

— 0S/161 assignment 1
 Multiprocess kernel
— Multiple single-threaded processes
— System calls access shared kernel data structures
— 0S/161 assignment 2
Multi-threaded user program

— multiple threads, sharing same data structures, isolated
from other user processes

Multiple multi-threaded processes

Thread Abstraction

* |Infinite number of processors

Programmer AI:I stracﬁun

S 1S
1 2

Threads

frm?
1,2

I
I
|
Processors :

r | | - | | 1

Physical Reality

S 51S 5
Pyt Ty g

| | I

' | Jm

| | I

L _1 _l_E_ d

Running Ready
Threads Threads

Because there aren’t infinite real

cores...
* Each of the infinite abstract processors runs at
variable speed

* Programs must be designed to work with any
schedule
— Program correctness doesn’t depend on timing

* “race free”

Programmer vs. Processor View

Programmers
View

XK=X+1;
Y=Y+ X
Z=X+5y,;

Possible Possible Possible
Execution Execution Execution
#£1 g2 83
K=x+1 K=X+ 1 K=¥+ 1
Y=yY+X 0 e . y=y+X

z=%+5y; threadissuspended
other threadis) run thread is su spenn::led
thread is resumed other thread(s) run

thread is resumed

Yy=¥t+X s
Z=X+5y Z=¥+ 5y

Possible Executions

Thread 1 T__] Thread 1 |
Thread 2 — Thread 2 |
Thread 3 C—J1 Thread3 |
al One execution bl Another execution
Thread 1) O OO

Thread2 [0O _D_D
Thread 3 B)

c) Another execution

Thread Operations

thread create(thread, func, args)
— Create a new thread to run func(args)
— 0S/161: thread_fork
thread_vyield()
— Relinquish processor voluntarily
— 0S/161: thread_yield
thread_join(thread)
— In parent, wait for forked thread to exit, then return
— 0S/161: assighment 1
thread_exit

— Quit thread and clean up, wake up joiner if any
— 0S/161: thread_exit

Example: threadHello

#include <pthread.h>
#include <stdio.h>

#define NTHREADS 10
pthread_t threads[NTHREADS];

$ gcc threadHello.c -lpthread

void* go(void *arg) {
long int n = (long int)arg;
printf(“Hello from thread %ld\n”, n);
return (void*)100+n;
}
int main(int argc, char *argv[]) {
long int I;
for (i=0; i<kNTHREADS; i++) pthread_create(&threads[i], NULL, &go, (void*)i);
for (i=0; i<NTHREADS; i++) {
void * exitValue;
pthread_join(threads[i], &exitValue);

printf(“Thread %ld returned with value %ld\n, I, (long int)exitValue);
}
printf(“Main thread done”);
return O;

Example Output

S ./a.out

Hello from thread 2

Hello from thread 3

Hello from thread 1

Hello from thread 4

Hello from thread 0

Hello from thread 5

Hello from thread 6

Hello from thread 7

Hello from thread 8

Thread 0 returned with value 100
Thread 1 returned with value 101
Thread 2 returned with value 102
Thread 3 returned with value 103
Thread 4 returned with value 104
Thread 5 returned with value 105
Thread 6 returned with value 106
Thread 7 returned with value 107
Thread 8 returned with value 108
Hello from thread 9

Thread 9 returned with value 109
Main thread done

Why aren’t the hello msgs in order?
Why are the“thread returned” msgs in order?

What is the maximum number of threads
running when thread 5 prints hello?

What is the minimum number?

Fork/Join Concurrency

 Threads can create children and wait for their
completion
* Data shared only before fork and after join

e Examples:
— Web server: fork a new thread per connection

* As long as threads are completely independent
— Merge sort

— Parallel memory copy

fork/join implementation of bzero

void blockzero(unsigned char *p, int length) {

}

inti,j;
thread_t threads[NTHREADS];
struct bzeroparams params[NTHREADS];

// For simplicity, assume length is divisible by NTHREADS

for (i=0; ikNTHREADS; i++, j += length/NTHREADS) {
paramsli].buffer = p + i * length/NTHREADS;
paramsli].length = length/NTHREADS;
thread_create(&threads[i], &go, ¶ms]i]);

}

for (i=0; i<kNTHREADS; i++) {
thread_join(threadsli]);
}

Thread State

Shared Per—Thread Per—Thread
State State State
Thread Control Thread Control
Heap Block (TCB) Block (TCB)
""""" Stack Stack
Information Information
Saved Saved
Global Registers Registers
Variables [Thread | | Thread
Metadata Metadata
_________ Stack . Stack
Code

Thread Lifecycle

Scheduler
Resumes Thread

Thread Creation Thread Exit

Finished

e.q.,
sthread exit ()

o
2.0.,

sthread create () u
Thread Yields/
Scheduler
Suspends Thread ,
Event Occurs e.g., sthread yield() Thread Waits for Event

e.g., other thread
calls
sthread join{)

e.d.,

sthread joini)

Implementing threads: Roadmap

e Kernel threads
— thread abstraction available only to kernel

— to the kernel, a kernel thread and a single
threaded user process look quite similar

* Multithreaded processes using kernel threads
(Linux, MacOS)

— Kernel thread operations available via syscall

e User-level threads
— Thread operations without system calls

Kernel

Multithreaded OS Kernel

Code Kernel Thread 1 Kernel Thread 2 Kernel Thread 3 Process 1 Process 2
Globals TCB 1 TCB 2 TCB 3 PCB 1 PCB 2
Stack Stack Stack Stack Stack
Hgap .+.:”.”. ressssaans .”..”.:.
Process 1 Process 2
User-Level Processes Thread Thread
Stack Stack
Code Code
Globals Globals
Heap Heap

Implementing threads

 Thread create(thread, func, args)
— Allocate thread control block
— Allocate stack
— Build stack frame for base of stack (stub)
— Put func, args on stack
— Put thread on ready list
— Will run sometime later (maybe right away!)

* stub(func, args): 0S/161 mips threadstart
— Call (*func)(args)
— When returns, call thread_exit()

Thread Stack

 What if a thread puts too many procedures on
its stack?
— What should happen?
— What happens in Java?
— What happens in Linux?

— What happens in Pintos?

Implementing thread context switch

* Voluntary
— thread_yield
— thread_join (if child is not done yet)

* |nvoluntary
— Interrupt or exception
— Some other thread is higher priority

* preemptive vs. non-preemptive scheduling

Voluntary thread context switch

* User-level threads in a single-threaded process
— Save registers on old stack
— Switch to new stack, new thread
— Restore registers from new stack
— Return

e Kernel threads

— Exactly the same!

— 0S/161: thread switch is always between kernel
threads, not between user process and kernel thread

0S/161 switchframe_switch

/* a0: old thread stack pointer
* al: new thread stack pointer */

/* Allocate stack space for 10 registers. */
addi sp, sp, -40

/* Save the registers */
sw ra, 36(sp)
sw gp, 32(sp)
sw s8, 28(sp)
sw s6, 24(sp)
sw s5, 20(sp)
sw s4, 16(sp)
sw s3, 12(sp)
sw s2, 8(sp)
sw s1, 4(sp)
sw s0, O(sp)

/* Store old stack pointer in old thread */
sw sp, 0(a0)

/* Get new stack pointer from new thread */
lw sp, 0(al)
nop /* delay slot for load */

/* Now, restore the registers */

lw s0, O(sp)

lw s1, 4(sp)

lw s2, 8(sp)

Ilw s3, 12(sp)

Ilw s4, 16(sp)

Ilw s5, 20(sp)

lw s6, 24(sp)

Ilw s8, 28(sp)

lw gp, 32(sp)

Ilw ra, 36(sp)

nop /* delay slot for load */

/* and return. */
jra
addi sp, sp, 40 /* in delay slot */

x86 switch threads(oldT, nextT)

Save caller’s register state

NOTE: %eax, etc. are ephemeral
pushl %ebx

pushl %ebp

pushl %esi

pushl %edi

Get offsetof (struct thread, stack)
mov thread_stack_ofs, %edx

Save current stack pointer to old
thread's stack, if any.

movl SWITCH_CUR(%esp), %eax
movl %esp, (%eax,%edx,1)

Change stack pointer to new
thread's stack

this also changes currentThread
movl SWITCH_NEXT(%esp), %ecx
movl (%ecx,%edx,1), %esp

Restore caller's register state.
popl %edi

popl %esi

popl %ebp

popl %ebx

ret

A Subtlety

e thread create(func) puts thread on ready list

* When it first runs, some thread calls
switchframe

— Saves old thread to stack

— Restores next thread state from stack

e Set up a new thread’s stack as if it had saved
its state in switchframe

— “returns” to stub at base of stack to run func

Two threads call yield

Thread 1= instructions

call thread yedd

gave giate to stack
gayve giate to TCB
chaoase anather thread
load other thread siate

return thread _yield
call thread yiadd

gave giate to stack
gave giate to TCEB
chaase anather thread
load ather thread state

return theead _yield

Thread Z's instructions

call thresd_wield

save slate to stack
sgve state to TCB
choose another thread
laad other thread state

raturn thread_yield
call thread_yiald

save slate to stack
save state to TCB
choose another thread
laad other thread state

Processors inatructions

call threed yiaeld

save stale fo stack
save state to TCB
choose another thread
kzad other thread state
call thresd_yield

save state 1o stack
save state to TCB
choose another thread
aad other thread state
raturn thread yield
call thregd yield

save state to stack
save state to TCB
choosa another thread
kzad other thread state
refurn thread yiekd
call thregd yield

save state 1o stack
save state to TCB
choose another thread
aad other thread state
refurn thread yield

Involuntary thread switch

* Timer or I/O interrupt
— Tells OS some other thread should run
* Simple version (0S/161)
— End of interrupt handler calls schedule()

— When resumed, return from handler resumes
kernel thread or user process

e Faster version (Linux)
— Interrupt handler returns to saved state in TCB
— Could be kernel thread or user process

Multithreaded User Processes (Take 1)

e User thread = kernel thread (Linux, MacOS)
— System calls for thread create, thread join, etc.
— Kernel does context switch

— Simple, but lots of transitions between user and
kernel mode

Multithreaded User Processes (Take 1)

Kernel

Code Kernel Thread 1 Kernel Thread 2 Kernel Thread 3 Process 1 Process 2
5 S S PCB 1 PCB 2
Globals [ce1 | [teB2 | [tcB3 | |[T1cB1A| [T1cB1B| [TCB2A| [TCB2B |
Stack Stack Stack Stack Stack Stack Stack
Wi |::::::::::| \:::::::z::| |::::::::::| | | | | | | | |
Process 1 Process 2
User-Level Processes Thread A Thread B Thread A Thread B
| Stack | Stack l Stack | | Stack |
Code Code
Globals Globals
Heap Heap

Multithreaded User Processes (Take 2)

e Green threads (early Java)
— User-level library within a single threaded process
— Library does thread context switch
— Preemption via upcall/signal on timer interrupt

— Use multiple processes for parallelism
e Shared memory region mapped into each process

e “User level threads”

