
Concurrency

Motivation

• Operating systems need to be able to handle multiple
things at once
– processes, interrupts, background system maintenance

• Servers need to handle MTAO
– Multiple connections handled simultaneously

• Parallel programs need to handle MTAO
– To achieve better performance

• Programs with user interfaces often need to handle MTAO
– To achieve user responsiveness while doing computation

• Network and disk bound programs need to handle MTAO
– To hide network/disk latency

But we already covered concurrency…

• Didn’t we learn all about concurrency in CSE
332/333?
– More practice

• Realistic examples

– Design patterns and pitfalls
• Methodology for writing correct concurrent code

– Implementation
• How do threads work at the machine level?

– CPU scheduling
• If multiple threads ready to run, which do we do first?

Definitions

• A thread is a single execution sequence that
represents a separately schedulable task

– Single execution sequence: familiar programming
model

– Separately schedulable: OS can run or suspend a
thread at any time

• Protection is an orthogonal concept

– Can have one or many threads per protection
domain

Threads in the Kernel and at User-level

• Multi-threaded kernel
– multiple threads, sharing kernel data structures, capable of

using privileged instructions
– OS/161 assignment 1

• Multiprocess kernel
– Multiple single-threaded processes
– System calls access shared kernel data structures
– OS/161 assignment 2

• Multi-threaded user program
– multiple threads, sharing same data structures, isolated

from other user processes

• Multiple multi-threaded processes

Thread Abstraction

• Infinite number of processors

Because there aren’t infinite real
cores…

• Each of the infinite abstract processors runs at
variable speed

• Programs must be designed to work with any
schedule

– Program correctness doesn’t depend on timing

• “race free”

Programmer vs. Processor View

Possible Executions

Thread Operations

• thread_create(thread, func, args)
– Create a new thread to run func(args)
– OS/161: thread_fork

• thread_yield()
– Relinquish processor voluntarily
– OS/161: thread_yield

• thread_join(thread)
– In parent, wait for forked thread to exit, then return
– OS/161: assignment 1

• thread_exit
– Quit thread and clean up, wake up joiner if any
– OS/161: thread_exit

Example: threadHello

#include <pthread.h>
#include <stdio.h>
#define NTHREADS 10
pthread_t threads[NTHREADS];
void* go(void *arg) {
 long int n = (long int)arg;
 printf(“Hello from thread %ld\n”, n);
 return (void*)100+n;
}
int main(int argc, char *argv[]) {
 long int I;
 for (i=0; i<NTHREADS; i++) pthread_create(&threads[i], NULL, &go, (void*)i);
 for (i=0; i<NTHREADS; i++) {
 void * exitValue;
 pthread_join(threads[i], &exitValue);
 printf(“Thread %ld returned with value %ld\n, I, (long int)exitValue);
 }
 printf(“Main thread done”);
 return 0;
}

$ gcc threadHello.c -lpthread

Example Output

$./a.out
Hello from thread 2
Hello from thread 3
Hello from thread 1
Hello from thread 4
Hello from thread 0
Hello from thread 5
Hello from thread 6
Hello from thread 7
Hello from thread 8
Thread 0 returned with value 100
Thread 1 returned with value 101
Thread 2 returned with value 102
Thread 3 returned with value 103
Thread 4 returned with value 104
Thread 5 returned with value 105
Thread 6 returned with value 106
Thread 7 returned with value 107
Thread 8 returned with value 108
Hello from thread 9
Thread 9 returned with value 109
Main thread done

• Why aren’t the hello msgs in order?

• Why are the“thread returned” msgs in order?

• What is the maximum number of threads
running when thread 5 prints hello?

• What is the minimum number?

Fork/Join Concurrency

• Threads can create children and wait for their
completion

• Data shared only before fork and after join

• Examples:

– Web server: fork a new thread per connection

• As long as threads are completely independent

– Merge sort

– Parallel memory copy

fork/join implementation of bzero

void blockzero(unsigned char *p, int length) {
 int i,j;
 thread_t threads[NTHREADS];
 struct bzeroparams params[NTHREADS];

 // For simplicity, assume length is divisible by NTHREADS
 for (i=0; i<NTHREADS; i++, j += length/NTHREADS) {
 params[i].buffer = p + i * length/NTHREADS;
 params[i].length = length/NTHREADS;
 thread_create(&threads[i], &go, ¶ms[i]);
 }

 for (i=0; i<NTHREADS; i++) {
 thread_join(threads[i]);
 }
}

Thread State

Thread Lifecycle

Implementing threads: Roadmap

• Kernel threads
– thread abstraction available only to kernel

– to the kernel, a kernel thread and a single
threaded user process look quite similar

• Multithreaded processes using kernel threads
(Linux, MacOS)
– Kernel thread operations available via syscall

• User-level threads
– Thread operations without system calls

Multithreaded OS Kernel

Implementing threads

• Thread_create(thread, func, args)
– Allocate thread control block

– Allocate stack

– Build stack frame for base of stack (stub)

– Put func, args on stack

– Put thread on ready list

– Will run sometime later (maybe right away!)

• stub(func, args): OS/161 mips_threadstart
– Call (*func)(args)

– When returns, call thread_exit()

Thread Stack

• What if a thread puts too many procedures on
its stack?

– What should happen?

– What happens in Java?

– What happens in Linux?

– What happens in Pintos?

Implementing thread context switch

• Voluntary

– thread_yield

– thread_join (if child is not done yet)

• Involuntary

– Interrupt or exception

– Some other thread is higher priority

• preemptive vs. non-preemptive scheduling

Voluntary thread context switch

• User-level threads in a single-threaded process

– Save registers on old stack

– Switch to new stack, new thread

– Restore registers from new stack

– Return

• Kernel threads

– Exactly the same!

– OS/161: thread switch is always between kernel
threads, not between user process and kernel thread

OS/161 switchframe_switch

x86 switch_threads(oldT, nextT)

Save caller’s register state
NOTE: %eax, etc. are ephemeral
pushl %ebx
pushl %ebp
pushl %esi
pushl %edi

Get offsetof (struct thread, stack)
mov thread_stack_ofs, %edx
Save current stack pointer to old

thread's stack, if any.
movl SWITCH_CUR(%esp), %eax
movl %esp, (%eax,%edx,1)

Change stack pointer to new
thread's stack

this also changes currentThread
movl SWITCH_NEXT(%esp), %ecx
movl (%ecx,%edx,1), %esp

Restore caller's register state.
popl %edi
popl %esi
popl %ebp
popl %ebx
ret

A Subtlety

• thread_create(func) puts thread on ready list

• When it first runs, some thread calls
switchframe

– Saves old thread to stack

– Restores next thread state from stack

• Set up a new thread’s stack as if it had saved
its state in switchframe

– “returns” to stub at base of stack to run func

Two threads call yield

Involuntary thread switch

• Timer or I/O interrupt
– Tells OS some other thread should run

• Simple version (OS/161)
– End of interrupt handler calls schedule()

– When resumed, return from handler resumes
kernel thread or user process

• Faster version (Linux)
– Interrupt handler returns to saved state in TCB

– Could be kernel thread or user process

Multithreaded User Processes (Take 1)

• User thread = kernel thread (Linux, MacOS)

– System calls for thread_create, thread_join, etc.

– Kernel does context switch

– Simple, but lots of transitions between user and
kernel mode

Multithreaded User Processes (Take 1)

Multithreaded User Processes (Take 2)

• Green threads (early Java)

– User-level library within a single threaded process

– Library does thread context switch

– Preemption via upcall/signal on timer interrupt

– Use multiple processes for parallelism

• Shared memory region mapped into each process

• “User level threads”

