
Programming Interface

Main Points

• Creating and managing processes

– fork, exec, wait

• Performing I/O

– open, read, write, close

• Communicating between processes

– pipe, dup, select, connect

• Example: implementing a shell

Shells

• A shell is a job control system
– Allows programmer to create and manage a set of

programs to do some task

– Windows, MacOS, Linux all have shells
• Desktop vs. Shell?

• Example: to compile a C program
$ cc –c sourcefile1.c

$ cc –c sourcefile2.c

$ ln –o program sourcefile1.o sourcefile2.o

Questions

• If the compiler (cc) crashes, does the shell
crash?

• If the shell crashes, does the compiler run to
completion?

Basic Shell Operation

• Shells implement some commands, but
primarily they launch new processes

– cc –c sourcefile1.c
Starts a new process that (a) executes “cc” and (b)
is passed [-c, sourcefile1.c] as arguments.

• What system call(s) are required to create a
new process running some executable?

Windows: CreateProcess

• System call to create a new process to run a
program
– Create and initialize the process control block (PCB) in

the kernel
– Create and initialize a new address space
– Load the program into the address space
– Copy arguments into memory in the address space
– Initialize the hardware context to start execution at

``start'’
– Inform the scheduler that the new process is ready to

run

Windows CreateProcess API
(simplified)

if (!CreateProcess(
 NULL, // No module name (use command line arg)
 argv[1], // Command line
 NULL, // Process handle not inheritable
 NULL, // Thread handle not inheritable
 FALSE, // Set handle inheritance to FALSE
 0, // No creation flags
 NULL, // Use parent's environment block
 NULL, // Use parent's starting directory
 &si, // Pointer to STARTUPINFO structure
 &pi) // Pointer to PROCESS_INFORMATION structure
) { // success

UNIX Process Management

• fork – system call to create a copy of the
current process, and start it running

– No arguments!

• exec – system call to change the program being
run by the current process

• wait – system call to wait for a process to finish

• signal/kill – system calls to register a
handler for a signal and to send a signal to
another process

UNIX Process Management

Question: What does this code print?

int child_pid = fork();

if (child_pid == 0) { // I'm the child process

 printf("I am process #%d\n", getpid());

 return 0;

} else { // I'm the parent process

 printf("I am parent of process #%d\n", child_pid);

 return 0;

}

Questions

• Can UNIX fork() return an error? Why?

• Can UNIX exec() return an error? Why?

• Can UNIX wait() ever return immediately?
Why?

Implementing UNIX fork

Steps to implement UNIX fork
– Create and initialize the process control block

(PCB) in the kernel

– Create a new address space

– Initialize the address space with a copy of the
entire contents of the address space of the parent

– Inherit the execution context of the parent (e.g.,
any open files)

– Inform the scheduler that the new process is
ready to run

Implementing UNIX exec

• Steps to implement UNIX exec

– Load the executable into the current address
space (overwriting what’s already there)

– Copy arguments into the address space

– Initialize the hardware context to start execution
at ``start''

UNIX I/O

• Uniformity
– All operations on all files, devices use the same set of

system calls: open, close, read, write

• Open before use
– Open returns a handle (file descriptor) for use in later

calls on the file

• Byte-oriented
• Kernel-buffered read/write
• Explicit close

– To garbage collect the open file descriptor

UNIX File System Interface

• UNIX file open is a Swiss Army knife:
– Open the file, return file descriptor (an int)

– Options:
• if file doesn’t exist, return an error

• If file doesn’t exist, create file and open it

• If file does exist, return an error

• If file does exist, open file

• If file exists but isn’t empty, nix it then open

• If file exists but isn’t empty, return an error

• …

Interface Design Question

• Why not separate syscalls for
open/create/exists?

if (!exists(name))

 create(name); // can create fail?

fd = open(name); // does the file exist?

Implementing a Shell

char *prog, **args;

int child_pid;

// Read and parse the input a line at a time

while (readAndParseCmdLine(&prog, &args)) {

 child_pid = fork(); // create a child process

 if (child_pid == 0) {

 exec(prog, args); // I'm the child process. Run program

 // NOT REACHED

 } else {

 wait(child_pid); // I'm the parent, wait for child

 }

}

