Programming Interface

Main Points

Creating and managing processes
— fork, exec, wait

Performing /O

— open, read, write, close
Communicating between processes

— pipe, dup, select, connect

Example: implementing a shell

Shells

* Ashellis ajob control system

— Allows programmer to create and manage a set of
programs to do some task

— Windows, MacOS, Linux all have shells
e Desktop vs. Shell?

e Example: to compile a C program

S cc —c sourcefilel.c
S cc —c sourcefile2.c
$ 1In -o program sourcefilel.o sourcefile2.o

Questions

 |f the compiler (cc) crashes, does the shell
crash?

* |f the shell crashes, does the compiler run to
completion?

Basic Shell Operation

e Shells implement some commands, but
primarily they launch new processes

— cc —c sourcefilel.c
Starts a new process that (a) executes “cc” and (b)
is passed [-c, sourcefilel.c] as arguments.

 What system call(s) are required to create a
new process running some executable?

Windows: CreateProcess

* System call to create a new process to run a
program

— Create and initialize the process control block (PCB) in
the kernel

— Create and initialize a new address space
— Load the program into the address space
— Copy arguments into memory in the address space

— Initialize the hardware context to start execution at
“start”

— Inform the scheduler that the new process is ready to
run

Windows CreateProcess API

(simplified)

if (ICreateProcess(

NULL,
argv[1],
NULL,
NULL,
FALSE,
0,
NULL,
NULL,
&si,
&pi)

) {// success

// No module name (use command line arg)
// Command line

// Process handle not inheritable

// Thread handle not inheritable

// Set handle inheritance to FALSE

// No creation flags

// Use parent's environment block

// Use parent's starting directory

// Pointer to STARTUPINFO structure
// Pointer to PROCESS _INFORMATION structure

UNIX Process Management

fork — system call to create a copy of the
current process, and start it running

— No arguments!
exec — system call to change the program being
run by the current process

wait — system call to wait for a process to finish
signal/kill —system calls to register a

handler for a signal and to send a signal to
another process

UNIX Process Management

pid = fork();

if [pid == 0]
exect...);

alse
wantipid);

fark

7
™~

pid = forkf{);

if (pid == 0}
Eec].);

alse
wiart{pid);

2xec

main {) {

pid = fork(l;

if [pid == 0}
exec]...);

alse
wartipid),

weant

e

e

Question: What does this code print?

int child_pid = fork();

if (child _pid == 0) { // I'm the child process
printf("l am process #%d\n", getpid());
return O;

} else { // I'm the parent process
printf("l am parent of process #%d\n", child pid);

return O;

Questions

* Can UNIX fork() return an error? Why?
* Can UNIX exec() return an error? Why?

* Can UNIX wait() ever return immediately?
Why?

Implementing UNIX fork

Steps to implement UNIX fork

— Create and initialize the process control block
(PCB) in the kernel

— Create a new address space

— Initialize the address space with a copy of the
entire contents of the address space of the parent

— Inherit the execution context of the parent (e.g.,
any open files)

— Inform the scheduler that the new process is
ready to run

Implementing UNIX exec

e Steps to implement UNIX exec

— Load the executable into the current address
space (overwriting what’s already there)

— Copy arguments into the address space

— Initialize the hardware context to start execution
at “start"

UNIX /O

Uniformity

— All operations on all files, devices use the same set of
system calls: open, close, read, write

Open before use

— Open returns a handle (file descriptor) for use in later
calls on the file

Byte-oriented
Kernel-buffered read/write

Explicit close
— To garbage collect the open file descriptor

UNIX File System Interface

UNIX file open is a Swiss Army knife:

— Open the file, return file descriptor (an int)
— Options:
e if file doesn’t exist, return an error
* |f file doesn’t exist, create file and open it
* If file does exist, return an error
* |If file does exist, open file
If file exists but isn’t empty, nix it then open
If file exists but isn’t empty, return an error

Interface Design Question

 Why not separate syscalls for
open/create/exists?

if (lexists(name))
create(name); // can create fail?
fd = open(name); // does the file exist?

Implementing a Shell

char *prog, **args;
int child_pid;

// Read and parse the input a line at a time
while (readAndParseCmdLine(&prog, &args)) {
child_pid =fork(); // create a child process
if (child_pid == 0) {
exec(prog, args); //I'm the child process. Run program
// NOT REACHED
} else {
wait(child_pid); //I'm the parent, wait for child

}

