
Diverse workloads and a wide range ofhardware
configurations compound the complexity ofan operating

system's memory management policies.

Virtual Memory Management
in the VAX/VMS
Operating System

Henry M. Levy and Peter H. Lipman, Digital Equipment Corporation

The VAX-i 1/780, introduced in 1978, and the smaller
VAX- 11/750, introduced in 1980, are Digital Equipment
Corporation's first implementations of the 32-bit
VAX-II minicomputer architecture.' Eventually, there
will be a family of VAX-I I minicomputers. The VAX-I I
and its VAX/VMS operating system were designed to
provide extended address space and enhanced perfor-
mance for Digital's PDP- 11 customers. Built on Digital's
experience with a multitude of PDP-11 operating sys-
tems, VAX/VMS was intended to provide a single en-
vironment for all VAX-based applications, whether real-
time, timeshared (including program development), or
batch. In addition, VAX/VMS had to operateon a family
of processors having different performance characteris-
tics and physical memory capacities ranging from 250K
bytes to more than 8M bytes. To meet the requirements
posed by these applications environments, the memory
management system had to be capable of adjusting to the
changing demands characteristic of timesharing while
allowing the predictable performance required by real-
time and batch processes.
Memory management policies and decisions made in

the design and implementation of the first release of the
VAX/VMS operating system in 1978 reflected the con-
cerns of the developers. This article examines those con-
cerns and the mechanisms selected to deal with them.

VAX- 11 hardware

The basic entity in the VAX-1 I system is the process.
Each process has a byte-addressable, 32-bit virtual ad-
dress space, which is divided into 512-byte pages. A 32-bit
virtual address contains a 21-bit virtual page number and
a 9-bit byte offset within the page. The page is the basic
unit of mapping and protection.

The upper two bits ofthe virtual address divide the pro-
cess address space into a number of functional regions or
spaces. Figure I shows the division of the address space
into system-wide and per-process segments. The high-

Figure 1. VAX-11 process virtual address (a)and virtual address space (b).

0018-9162/82/0300-0035S00.75 (1982 IEEE 35March 1982

address half of the address space (bit 31 = 1) is known as
system space and is shared by all processes in the system.
That is, a system-space virtual address generated by any
process will access the same physcial memory location.
Only half of the system space is currently used by the ar-
chitecture.
The low-address half of the address space (bit 31 = 0) is

known as process space and is unique to each process.
Process space is itself divided into two regions by bit 30 of
the virtual address. The low-address half, known as the
P0, or program region, grows toward higher addresses, as
is shown by the arrows in Figure 1. The high-address half,

Figure 2. VAXIVMS use of VAX-11 address space: (a)
system space layout; (b) per-process space layout.

known as the P1, or control region, grows toward lower
addresses. Each process, therefore, has two local seg-
ments offering two directions of expansion.
Each region (system, P0, and P1) is defined by a page

table. A VAX-Il page table isacontiguous array of 32-bit
("longword") page-table entries. Each page-table entry,
or PTE, contains the following fields:

(1) a valid bit (PTE < 31 >) that indicates whether the
page-table entry contains mapping information;

(2) a protection field (PTE<30:27>) that indicates
what privilege is required to read or write the page;

(3) a modify bit (PTE < 26 >) that indicates whether a
write access has occurred to the page;

(4) a field used by the operating system (PTE <25:
21 >); and

(5) the physical page frame number (PTE<20:0>)
that locates the page in physical memory.

If the valid bit is zero, all other bits, with the exception of
the protection field, can be used by software. Because the
hardware checks protection for a page whether or not the
valid bit is set, an illegal access to a page cannot cause a
page to be loaded.
Each page table is defined by two hardware registers: a

base address register and a length register. The page table
for system space, called the system page table, is located
by reference to the system page table base register, which
contains its physical address. The P0 and P1 page tables
for each process are located in the system-space section of
the address space; therefore, the P0 and P1 page table
base registers contain virtual addresses. The P0 and P1
page tables can themselves be paged because they are in
virtual memory. The translation of a process-space vir-
tual address involves two accesses: one to the system page
table, to calculate the physical address ofthe process page
table, and one to the process page table, to calculate the
physical address of the specified element. Since the P0
and P I page tables are process specific, the corresponding
base and length registers are changed by a process context
switch. The system page table, because it is shared by all
processes, is not affected by a context switch.
The VAX-1 I hardware provides a translation buffer

for caching virtual-to-physical translations, so multiple
references to page tables in physical memory are usually
avoided. The translation buffer is divided into two sec-
tions, one for system translations and one for per-process
translations. When a context switch occurs, only the per-
process section needs to be flushed.

Use of address space by VAX/VMS

As their names imply, the three address regions, or

spaces, are used by VAX/VMS for specific purposes. All
executive code and data, including some process-specific
data structures and process page tables, are stored in the
system region. Figure 2(a) shows the layout of system-

space virtual memory. The first few pages of system

space, called the vector region, contain pointers to ex-

ecutive service routines in system space. Users call service
routines through these fixed-location vectors. This calling

COMPUTER36

scheme allows routines to be relocated in later operating-
system releases without affecting user programs.

Thus, the VMS operating system is shared implicitly by
all processes in the system. Users call operating-system
service routines as they would call any user-written pro-
cedure. The operating system is protected through the
memory management system, which uses a hardware ac-
cess mode mechanism; executive code and data are not
made accessible to programs executing in the least
privileged (user) mode.
VAX/VMS, then, is a collection of procedures that ex-

ist in the address space of each process. These procedures
can be called explicitly or-for example, when an excep-
tion or page fault occurs-implicitly to perform services
on behalf of a process. Because the operating system does
not have a separate address context, a context switch can
occur even while a process is executing code within the ex-
ecutive. Several processes can be executing simultaneous-
ly within the operating system.
The PO (program) region contains the user's executable

program. The user's program can dynamically grow into
higher-addressed sections of PO space. In constructing an
executable program, the linker usually allocates the pro-
gram beginning at the second page of the virtual address
space. The first page, address 0 through 511 decimal, is
marked as no access so that any reference of address 0 will
cause an exception. This policy has proved to be valuable
in catching program errors involving uninitialized
pointers (including several "working" programs Rorted to
VAX/VMS after several years of operation). VAX/VMS
uses the P 1 (control) region to store process-specific data,
as well as the program image for the command interpreter,
as shown in Figure 2(b). The command interpreter executes
within this region so as not to disturb user program images.
The user's stack is located in the low-address part of the P1
region and grows toward lower addresses. The P1 region
also contains fixed-sized stacks for use by executive code
that executes on behalf of the process.

Memory-management implementation

Most mainframe computer systems include special
hardware (such as fixed-head paging disks) to enhance the
paging performance of virtual memory systems. Mini-
computer systems, in contrast, often provide inadequate
hardware support for virtual memory operation. More-
over, they must support a wide range of hardware imple-
mentations. Therefore, the VAX/VMS memory manage-
ment system had to be able to operate on hardware con-
figurations having small, inexpensive CPUs, slow
moving-head disks, and small memories.

In light of the requirements posed by these low-end
systems, the designers of VAX/VMS were concerned
with a number of problems typically encountered in pag-
ing systems. Their major concerns included:

(1) the effect of one or more heavily paging programs
on other programs in the system;

(2) the high cost of program startup and restart time in
virtual memory environments that require a pro-
gram to fault its way into main memory;

(3) the increased disk workload caused by paging; and
(4) the processor time consumed by searching page

lists in the operating system.

These problems are only amplified by the constraints of
minicomputer hardware.
To manage these problems, the VAX/VMS memory-

management system is divided into two basic com-
ponents: the pager and the swapper. The pager is an
operating system procedure that executes as the result of a
page fault. It executes within the context of the faulting
process and is responsible for loading and removing pro-
cess pages into and out of memory. The swapper is a
separate process responsible for loading and removing en-
tire processes into and out of memory.

The pager. The first design concern listed above is the
effect of heavily faulting programs on other programs in
the system. Some paging systems use global replacement
policies whereby a fault can cause removal of any pro-
gram's pages. In this scheme, the pages usually selected
for removal are those least recently used on a global basis;

Trade-offs were made in favor of reducing
processor usage at the possible cost of

increased memory requirements.

that is, the page not referenced for the longest time (the
LRU page) is removed. When restarted, the affected pro-
gram must fault these pages back into memory one at a
time. In an attempt to limit the effect of a heavily faulting
process on other processes in the system, VAX/VMS uses
a process-local page replacement policy. That is, when a
page must be removed from memory, the page to be re-
moved is selected from the process requesting a new page.
A limit is placed on the amount of physical memory a

process may occupy. The set of pages currently in
memory for a process is called the process's resident set,
and the resident-set limit is the maximum size of the resi-
dent set. For each process, the pager maintains a data
structure, called the resident-set list, that describes the
pages contained in that process's resident set.
When a new program is started, its resident set is initial-

ly empty. As the program executes, pages are loaded into
its resident set by the pager whenever a nonresident page is
referenced. When the resident-set limit is reached, the
faulting process must release a page for each newly
faulted page added to its resident set. The pager uses sini-
ple first-in, first-out replacement within the resident-set
list to select the page to be removed.

In most virtual memory systems, a reference bit in each
page table entry is set whenever the page is referenced. By
periodically clearing all reference bits and remembering
when each was last set, the operating system can keep
track of the relative "age" of each page. (Other reference-
bit schemes, such as a clock, do not require a complete
scan of all reference bits.)*
*Although VAX does not hase reference bits, work at the Unisersity of
California, Berkeley,2 on VAX/Unix, which uses a reference-bit
algorithm, suggests that softw are simulation of the reference bit consumes
only 0.05 percent of the processor.

March 1982 37

The VAX/VMS designers, however, were concerned
with the cost of reference-bit scanning for extremely large
programs. On slower processors with large physical mem-
ories, the computation time required to search process
pages in support of more sophisticated algorithms might
be prohibitive. And, since it is easier to add more memory
than it is to increase processor cycles, trade-offs were
made in favor of reducing processor usage at the possible
cost of increased memory requirements. Therefore, the
amount of computation required of the pager is limited; a
quick decision is made, and a software caching mecha-
nism is used to reduce the penalty for removing a page that
is still in use. In addition, no overhead is required to main-
tain well-behaved programs executing in sufficient
physical memory.
When a page is removed from a process's resident set, it

is placed on one of two page lists: the free page list or the
modified page list. If the modify bit is zero in the page-
table entry, a copy of that page still exists on disk, and the
page is added to the tail of the free list. The free list is the
source of available page frames for the system. For exam-
ple, when the pager requires a page of memory into which
to read a newly faulted page, it takes the frame from the
head of the free list. Therefore, a page removed from a
resident set will remain on the free list for some time
before it makes its way to the head of the list and is con-
sumed; how long it remains depends on the size of the list
and the fault rates of currently running programs.

If the modify bit in the page-table entry of the removed
page is one, the page has been changed and must be writ-
ten to the paging file. Such a page is queued on the tail of

the modified page list, where, again, it will remain for
some time before being written back to disk.

If a process faults a page that is on either list, the page is
returned to the process's resident set. The time required
for a fault from one of these lists is approximatley 200
microseconds on a VAX-I 1/780. These lists, then, act as
physical memory caches for recently removed pages. As
long as the list sizes remain above some threshold, the cost
of removing a page about to be referenced from a resident
set is minimal.

In addition to providing a high-speed cache for pages,
the VAX/VMS free-list mechanism acts to reduce pro-
gram fault rates. This reduction occurs because the
faulting of a page from the free list causes the page to be
placed back at the top of the FIFO resident-set list.
Results from simulation studies,3 as seen in Figure 3,
show the effects of reducing the size of a program's resi-
dent set by 10, 20, and 30 percent and using the removed
memory as a private free list. The data shown were ob-
tained from a Fortran compilation consisting of approx-
imately four million references to 359 pages. Although
this differs slightly from VAX/VMS, in which the secon-
dary list is global, the graph indicates that the addition of
a free list can reduce the fault rate of strict FIFO replace-
ment to a level arbitrarily close to LRU. This effect has
been demonstrated by other analytic and simulation
studies.4

Clustering ofpages. Since most minicomputers do not
have a separate paging device, the additional I/O caused
by paging can have a dramatic effect on normal file sys-
tem and swapping response time. In the VAX, this prob-

Figure 3. Faults vs. memory usage In Fortran compilation.

COMPUTER38

lem is magnified by the relatively small page size of 512
bytes. (The page size was chosen for file-system compati-
bility with the PDP- 1 and because of the promise of
low-latency semiconductor disk technologies.) To com-
bat the additional paging I/O load, VAX/VMS attempts
to reduce the number of physical disk operations by
reading and writing several pages at a time, a process
known as clustering.
When a page fault occurs, the pager may load several

pages into the process's resident set, the number to be
loaded depending on several parameters. The page to be
read can be found on either the modified or the free list,
in the paging file, in the original executable file for the
program, or in some other file that has been "mapped"
into the address space. (A program can request that a file
be mapped into its virtual memory; any access of a
mapped page may then cause a corresponding file block
to be loaded into memory.) The program loader simply
maps the executable program file and begins program ex-
ecution. The largest gain in read clustering of pages comes
from initial program execution when fault rates are
typically high.
An executable program is composed of several seg-

ments. A segment is a set of virtually contiguous pages
with similar attributes (for example, all are read-only). A
user can specify a default cluster size for each segment
when a program is linked. This cluster size is the max-
imum number of pages the pager will attempt to load at
once. Normally, no cluster size is supplied by the user,
and a systemwide default is used.
When the pager locates a page to be read from the ex-

ecutable file, it determines the cluster size for the
associated segment. The pager then checks to see whether
the adjacent blocks following the requested page on disk
contain pages that are adjacent to it in virtual memory.
Since the linker produces physically contiguous ex-
ecutable files on disk whenever possible, it is likely that
several pages can be read with a single disk operation. If
fewer than two contiguous pages are found, the pager will
check preceding pages within the segment. Finally, the
pager allocates the required number of page frames from
the free page list and initiates one disk read request to add
the chosen pages to the resident set.
A cluster size is also associated with a paging file, and

the pager performs a similar service there. However, since
the paging file contains pages from many processes, there
is less chance of finding virtually contiguous pages that
are physically contiguous on disk.

Page writes occur from the modified page list, which
receives all modified pages that are removed from resi-
dent sets. The modified page list serves two purposes: (1)
it acts as a cache of recently removed resident-set pages,
and (2) it allows for clustering writes to the page file. Two
system parameters, a low limit and a high limit, are asso-
ciated with the modified list size. VAX/VMS tries to
maintain at least the low limit, so that caching can take
place. However, when the list size reaches the high limit,
the pager writes a number of pages equal to the high limit
minus the low limit back to the paging file. In general, this
is done with one physical I/O operation to contiguous
blocks of the paging file. On a typical one-megabyte
VAX-11 system, the modified list's high limit is set at

more than 100 pages, while the low limit is set at 20 or 30
pages.
When preparing the operation, the pager searches the

modified list to find any virtually contiguous pages from
any of the processes. The write is performed so that vir-
tually contiguous pages from any process will be written
to contiguous paging-file disk blocks. When one of these
pages is faulted again, the pager may be able to cluster on
the read request.
Most paging systems attempt to write modified pages to

the paging file as quickly as possible in order to recover
the space. However, by delaying modified-page write re-
quests through the modified page list mechanism, VAX/
VMS realizes four optimizations:

(1) The modified page list acts as a cache of recently
removed pages. If a page on the list is referenced, it
is returned to the process at minimum cost.

(2) When a write request must be performed, many
pages can be written at once. Our development sys-
tem typically writes about 100 pages with a single
write to the paging file.

(3) Pages can be arranged on the paging file so that
clustering on read requests is possible.

(4) Because t,he writes are delayed, many page writes
are entirely avoided because either the pages are
faulted again or the program terminates.

Demand-zero and copy-on-reference pages. Pages that
were initially zero in a compiled program, such as unini-
tialized arrays, are not stored by the linker in the ex-
ecutable file. Instead, the linker creates a null-sized seg-
ment of demand-zero pages. A demand-zero page is a
page that is created for a program and initialized to zero
on demand. When the program is run, the corresponding
page-table entries are marked invalid, with the remaining
software bits indicating the presence of a demand-zero
page. When the page is faulted, the pager allocates a
physical memory page, fills it with zeros, and adds the
page to the resident set of the process. The pager also sets
the modified bit of the page-table entry so that the page
will be written back to the paging file when it is removed
from the resident set.

In a similar way, the pager sets the modify bit of the
page-table entry for a writable page when it is first loaded
from the executable file. From that point on, the paging
file will be used as backup storage for the page. Such
pages are known as copy-on-reference pages. When sev-
eral processes are sharing an executable file, each process
faulting a copy-on-reference page will receive its own
copy of that page.

Paging in system space. The VAX/VMS operating
system is composed of both paged and nonpaged code
and data. For paged code and data, the operating system
has a system resident set and a system resident-set list
analogous to those of the process structures. The size of
the system resident set is a parameter that can be adjusted
for different environments.
As page faults occur for the system, pages are loaded

into the system resident set. Once it is full, system page
faults cause pages to be removed from the system resident
set and placed on the free or modified page list.

March 1982 39

One exception is the treatment of process page tables,
which are pageable and located in system space. When a
process faults one of its page tables, the page table is
added to the process's private resident set. The page table
will not be eligible for removal from the resident set as
long as it contains any valid page-table entries. As a
member of the resident set, however, it will be swapped
along with the process. When a page table no longer con-
tains any valid mapping information, it becomes eligible
for removal along with other pages of the resident set.

Paging system operation. Some simple measurements
demonstrate the effectiveness of some of the paging
mechanisms described above. The data in Table 1 were
collected during an experiment with a simulated 20-user
educational workload. The columns show the total
counts and average rate per second of several system
events during that interval. The rows marked "pages
read" and "pages written" give the number of 512-byte
pages moved from or to disk, while the "read and write
I/0 operation" counters give the number of disk trans-
fers used to read or write those pages. From these
measurements we see the effect of clustering; an average
of 5.6 pages were transferred with each read operation
from disk, while an average of 98.2 pages were transferred
with each write from the modified list. We also see that
over half of the page faults were satisfied from the free
list, from the modified list, or from creation of demand-
zero pages.

The swapper. In addition to paging, VAX/VMS swaps
entire resident sets between memory and backing store.
The objectives of swapping are (1) to keep the highest-
priority processes resident and (2) to avoid the typically
high paging rates generated by resuming a process in most
paged systems. Swapping is handled by a process called
the swapper, which is also responsible for writing the
modified page list. The swapper executes whenever it is
awakened by the operating system.
Whenever a process is removed from memory, its entire

resident set is written to the swap file, along with some
process-specific operating system data base. The swap
operation may be performed in several pieces. For exam-
ple, if an I /O operation is in progress to some pages of the
resident set, those pages and their page tables are locked
in memory uintil the opeation completes. The swapper
writes all resident-set pages to a contiguous section of the
swap file, including the pages with I/0 in progress. If the

Table 1.
Sample VMS Paging System Measurements

(Interval time is 824.0 seconds)

TOTAL PAGE FAULTS
PAGES READ
PAGE READ 1/0 OPERATIONS
PAGES WRITTEN
PAGE WRITE 1/0 OPERATIONS
FAULTS FROM FREE PAGE LIST
FAULTS FROM MODIFIED PAGE LIST
DEMAND-ZERO FAULTS

COUNT

79847
39957
7012

11501
117

21483
17916
9740

RATE/SECOND
96.902
48.492
8.510
13.958
0.142

26.072
21.743
11.820

I/O was a read operation, the pages will be written to their
slots in the swap file when the read completes.
When a process not in memory becomes able to execute

(as an I/O operation is completed or a necessary resource
becomes available), it is read in by the swapper. The swap-
per allocates pages for the resident set, page tables, and
operating system data structures. If needed, space is
found by writing the modified page list or swapping out
other processes. Once free pages are allocated and the
read is initiated, the swapper updates the process's page-
table entries to reflect the new virtual-to-physical map-
ping.
VAX/VMS will not load a process that has been

swapped out unless there is sufficient physical memory for
its entire resident set. When a process resumes execution
after it has been swapped in, its resident set has exactly the
same membership that it had before its removal from
memory.
The swapper is also involved in process creation. When

a new process is created, the swapper swaps in a process
shell, which provides the initial environment in which a
program can be executed.

Program control of memory

For real-time processes that need a closely controlled
environment, or for any program that wishes to control
its use of memory, VAX/VMS provides a number of ex-
ecutive services. For example, a process can call routines
to:

* Expand (or contract) its P0 or P1 region.
* Increase (or decrease) the resident set size (each pro-

cess has lower and upper limits set by the system
manager).

* Lock (or unlock) pages in the resident set so that they
are always resident with the process.

* Lock (or unlock) the process in memory (the balance
set) so that it is never swapped.

* Create and/or map a global or private section into
the process address space.

* Produce a record of the page-fault activity of the
process.

These routines allow a program to monitor its behavior
and to act on the information the routines obtain. Pro-
grams that have knowledge of their use of virtual memory
can tell the operating system which pages are needed or
not needed at any time.

In VAX/VMS, Digital has taken a slightly unorthodox
approach to virtual memory management. This approach
was adopted for two major reasons. First, because of the
variety of intended hardware and application environ-
ments, the system needs to tightly control the use of
memory by processes, to limit the effect any one process's
use of memory might have on another process's opera-
tion, and to limit overhead processing in the paging
system. Second, because of the range of hardware con-
figurations (and disks in particular) to be supported,
specific approaches had to be taken to reduce the I/0
workload.

COMPUTER40

Three major mechanisms have been used to enhance
the performance of the operating system. The first is
caching of pages, which reduces the number of disk l/O
transactions on pages that have been recently removed
from a process's resident set. A fault from either the free
or the modified page list is handled rapidly within the
pager. The free-list mechanism has also been shown to
help reduce the fault rate. *
The second mechanism, clustering, provides the trans-

fer efficiency of large pages along with the fragmentation
characteristics of,small pages (at the cost of some addi-
tional space in the page data base). The modified-page-list
mechanism has a significant effect on system perfor-
mance. By delaying the writing of modified pages, this
mechanism allows the operating system to completely
avoid some writes-for example, in the case of refault or
program termination. When pages must be written, they
can be transferred very efficiently in large units-say, 100
pages at a time. The size of the modified page list is
possibly the most important performance parameter in
the system.
The third mechanism is to use process-local replace-

ment, along with swapping, to reduce the effect of one
process's paging activities on another's. When a process is
restarted following a context switch, it always resumes
with its resident set as the set existed before the interrup-
tion. A process is moved from and to memory with only a
few I/O transfer operations.
VAX/VMS is currently being used in such areas as air-

plane simulation, real-time data collection, design auto-
mation, timesharing development, commercial data pro-
cessing, and computational tasks. Since the first release of
VAX/VMS, the memory management system has been
greatly enhanced; however, the basic mechanisms have
continued to prove useful, even in more general and
dynamic environments. H

References

I. W. D. Strecker, "The VAX-11/780-A Virtual Address
Extension to the DEC PDP-II Family," AFIPS Conf.
Proc., Vol. 47, 1978 NCC, AFIPS Press, Montvale, N.J.,
1978.

2. 0. Babaoglu, W. Joy, and J. Porcar, "Design and Im-
plementation of the Berkeley Virtual Memory Extensions
to the UNIX Operating System," Department of Electrical
Engineering and Computer Science, University of Califor-
nia, Berkeley, Dec. 1979.

3. R. Turner and H. Levy, "Segmented FIFO Page Replace-
ment," Proc. ACM/Sigmetrics Conf. on Measurement
and Modeling of Computer Systems, Sept. 1981, Las
Vegas, Nev., pp. 48-51.

4. 0. Babaoglu, "Virtual Storage Management in the
Absence of Reference Bits," PhD thesis, Univeristy of
California, Berkeley, Nov. 1981.

'These lists do suffer from an inherent unfairness, however, because a
heavily faulting process can cause a turnover of the lists. This competes
with the goal of isolating programs from each other.

Henry M. Levy is a member of the VAX
Systems Architecture Group at Digital
Equipment Corporation. His interests are
in operating systems, computer architec-
ture, and distributed processing. He was a
member of the design and implementation
team for the VAX/VMS operating system.
Levy has a BS from Carnegie-Mellon Uni-
versity and an MS from University of
Washington. He is the co-author of the

book Computer Programming andArchitecture: The VAX-Il.

Peter Lipman is a consulting engineer with
Digital Equipment Corporation in May-
nard, Massachussetts, working on opera-
ting systems advanced development. He
was one of the principal designers and im-
plementors of the VAX/VMS operating
system, responsible for memory manage-
ment on VMS release 1. Previously, Lip-
man designed and implemented file sys-

/ _2 tems for the RSX-IIM and RSX-IID
operating systems. Before coming to Digital, he worked at Stan-
ford Research Institute in Menlo Park, California. Lipman
received an ScB from Brown University in 1965, and an MS from
Stanford University in 1969.

M ;'1wTS1£i'iwLIAILN
PURCHASE PLAN * 12-24 MONTH FULL OWNERSHIP PLAN * 35 MONTH LEASE PLAN

Pmawm PER EnH
1EX*FlUU PE11Sl 24U3)t Mm

LA3USDECwIfIrw $1,0.5 $105 $S $S04
LA34DECwrIV 6.K 9 53 36
LA30 ECwItmr IVFormsCtl .. 1,0K5 105 5e 40
LA_12CDECwrftMSR.. 2.295 220 122 83LA:_12O DECmrNi I RO 2,IhK 21111 112 75
VT11 CRT DEC ..p 1,6K 162 9K 61
Vr11CRTOECp. 1.195 115 67 43
Hi _.......... 3,295 315 185 119

_ _ ~~~~V`1131 CRT DE C 7 S 6 6
VT132CRT DECaC 1.995 190 106 72
_ _ VlmaChrCmpieeOp2Il 2.3K5 230 128 86
_bl74Pi Termini...al 1,595 153 5 56

_ IY5 tbl M_mciv Termlmal. 2,595 249 138 93
AAnt idtml 695 67 37 25
11705 PollSR 120 CPS 2,395 230 128 K6
Ti77 P nable KSR, 120 CPS 2,845 m 152 102
11810 FONfsr 1,695 152 K 61
TIM2 KSRPruiMr .. 2,195 211 117 80
ADM3A CRT Termal 595 57 34 22
A 5CR r-a 4 62 36 24ADMS CcRT Terminal 1165 112 65 42
ADM42 CRTTmrmina .. 1,995 190 106 72
EXCEL 12 CRT Terminal 1,95 182 90 S1*:.: 1.0 _ EXCEL42SmartBtuferedCRT. 95 K6 54 30
COLORSCAN1OColorCRT 3,195 307 171 116

*3 *2 25CRTTerml..I .. 850 82 46 31
950 CRT TermlnI 1,075 183 57 39
Liftr DuMMy 7715 RD.... 2.8K5 278 154 104
Liftr QIalIfy 7725 KSR 3.295 316 175 119

_ 20J KSR Pfter 30 CPS 1,19 115 67 43
212 KSR Prhr 120 CPS 2,195 211 117 80
Exma_ S8O/20 1,345 127 75 49
Excuve 80/30 1,C9S 162 9K 61

IX-8 F/T PrktIr 745 n 42 27X-_100DPrinter..r S. 8 6 48 32
E0_,4ChimlSlatMux ... 1,525 147 82 55
E00060Cl,mnmil$atblMux ... 2.050 197 110 74

Reader Service Number 5 >March 1982

