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This Lecture

• What’s a datacenter
• Why datacenters

• Types of datacenters

• Hyperscale datacenters
• Major problem: Server I/O performance

• Arrakis, a datacenter OS
• Addresses the I/O performance problem (for now)



What’s a Datacenter?

• Large facility to house computer systems
• 10,000s of machines

• Independently powered
• Consumes as much power as a small town

• First built in the early 2000s
• In the wake of the Internet

• Runs a large portion of the digital economy



Why Datacenters?

• Consolidation
• Run many people’s workloads on the same infrastructure

• Use infrastructure more efficiently (higher utilization)

• Leverage workload synergies (eg., caching)

• Virtualization
• Build your own private infrastructure quickly and cheaply

• Move it around anywhere, anytime

• Automation
• No need for expensive, skilled IT workers

• Expertise is provided by the datacenter vendor



Types of Datacenters

• Supercomputers
• Compute intensive
• Scientific computing: weather forecast, simulations, …

• Hyperscale (this lecture)
• I/O intensive => Makes for cool OS problems
• Large-scale web services: Google, Facebook, Twitter, …

• Cloud
• Virtualization intensive
• Everything else: “Smaller” businesses (eg., Netflix)



Hyperscale Datacenters

• Hyperscale: Provide services to billions of users

• Users expect response at interactive timescales
• Within milliseconds

• Examples: Web search, Gmail, Facebook, Twitter

• Built as multi-tier application
• Front end services: Load balancer, web server
• Back end services: database, locking, replication

• Hundreds of servers contacted for 1 user request
• Millions of requests per second per server



Hyperscale: I/O Problems

Hardware trend
• Network & stoage speeds keep on increasing

• 10-100 Gb/s Ethernet
• Flash storage

• CPU frequencies don’t
• 2-4 GHz

• Example system: Dell PowerEdge R520

Intel X520
10G NIC

Intel RS3 RAID
1GB flash-backed cache

Sandy Bridge CPU
6 cores, 2.2 GHz

2 us / 1KB packet 25 us / 1KB write

+ + =



Hyperscale: OS I/O Problems

OS problem

• Traditional OS: Kernel-level I/O processing => slow
• Shared I/O stack => Complex

• Layered design => Lots of indirection

• Lots of copies
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Receiving a packet in BSD
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Sending a packet in BSD

TCP UDP ICMP

IP

Network interface

Receive queue

Datagram
socket

Stream
socket

Kernel

Application Application

1. Application
Access control
Copy from user space to mbuf
Call TCP code and process
Possible enqueue on socket queue



Sending a packet in BSD

TCP UDP ICMP
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2. S/W Interrupt
Remaining TCP processing
IP processing
Enqueue on NIC queue



Sending a packet in BSD

TCP UDP ICMP
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Receive queue
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3. Interrupt
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Kernel

Linux I/O Performance

Redis
HW
13%

HW 18%

Kernel 84%

Kernel 62%

App
3%

App 20%

SET

G ET

% OF 1KB REQUEST TIME SPENT

API Multiplexing

Naming Resource limits

Access control I/O Scheduling

I/O Processing Copying

Protection

Data
Path

10G NIC
2 us / 1KB packet

RAID Storage
25 us / 1KB write

9 us

163 us



• Can we deliver performance closer to hardware?

• Goal: Skip kernel & deliver I/O directly to applications
• Reduce OS overhead

• Keep classical server OS features
• Process protection
• Resource limits
• I/O protocol flexibility
• Global naming

• The hardware can help us…

Arrakis Datacenter OS



• Standard on NIC, emerging on RAID

• Multiplexing
• SR-IOV: Virtual PCI devices

w/ own registers, queues, INTs

• Protection
• IOMMU:

Devices use app virtual memory

• Packet filters, logical disks:
Only allow eligible I/O

• I/O Scheduling
• NIC rate limiter, packet schedulers

Hardware I/O Virtualization

SR-IOV NIC

Packet filters

Network

Rate limiters

User-level
VNIC 1

User-level
VNIC 2



Kernel

Naming Resource limits

Access control

Redis

How to skip the kernel?

Redis
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Kernel

Naming

Resource limits

Access control

Redis

Arrakis I/O Architecture

Redis

I/O Devices
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Protection

Data Path
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Arrakis Control Plane

• Access control
• Do once when configuring data plane

• Enforced via NIC filters, logical disks

• Resource limits
• Program hardware I/O schedulers

• Global naming
• Virtual file system still in kernel

• Storage implementation in applications



Virtual Storage Area

/tmp/lockfile

/var/lib/key_value.db

/etc/config.rc

…

Kernel
VFS

emacs

open(“/etc/config.rc”)

Redis
Fast

HW ops

Global Naming

Logical 
disk

Indirect IPC interface



Storage Data Plane:
Persistent Data Structures
• Examples: log, queue

• Operations immediately persistent on disk

Benefits:

• In-memory = on-disk layout
• Eliminates marshaling

• Metadata in data structure
• Early allocation
• Spatial locality

• Data structure specific caching/prefetching

• Modified Redis to use persistent log: 109 LOC changed



Redis Latency

• Reduced in-memory GET latency by 65%

• Reduced persistent SET latency by 81%

9 us

163 us

4 us

31 us
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33%

HW
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libIO
35%

Kernel
62%

App
32%

App
20%

Arrakis

Linux

HW
77%
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libIO
7%

Kernel
84%
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15%

App
3%

Arrakis

Linux (ext4)



Redis Throughput

• Improved GET throughput by 1.75x
• Linux: 143k transactions/s

• Arrakis: 250k transactions/s

• Improved SET throughput by 9x
• Linux: 7k transactions/s

• Arrakis: 63k transactions/s



memcached Scalability
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Summary

• OS is becoming an I/O bottleneck
• Globally shared I/O stacks are slow on data path

• Arrakis: Split OS into control/data plane
• Direct application I/O on data path

• Specialized I/O libraries

• Application-level I/O stacks deliver great performance
• Redis: up to 9x throughput, 81% speedup

• Memcached scales linearly to 3x throughput



Interested?

• I am recruiting PhD students

• I work at UT Austin

• Apply to UT Austin’s PhD program:
http://services.cs.utexas.edu/recruit/grad/frontmatter/announcement.html


