Datacenter

Operating Systems
CSE451

Simon Peter
With thanks to Timothy Roscoe (ETH Zurich)

Autumn 2015

This Lecture

 What’s a datacenter
 Why datacenters
* Types of datacenters

* Hyperscale datacenters
* Major problem: Server |/0 performance

* Arrakis, a datacenter OS
* Addresses the |/O performance problem (for now)

What’s

g
-
-,

= |
" i ".‘- | ‘--

Lar efaﬁllltyﬁ'tc) hous‘e co.;er systeﬁhs"
’ ‘%OQQS ei’ma _ By .("

-
{ ¢|_°

-

. "s-,,. "_:"’. :
|‘r "l a "hm..,:-‘.'-- : et el A4
L P ;‘T';‘;z'.'e;;::,.

| fJ.ndéBendena\cpgwﬁEd
|

s = Consﬂ' es-asM pow sma[l‘;t‘.é"!‘@.ri:;-: .

-
s W > 7
\ ‘ ' ‘ ."-—..:.' 1
/ ' Lo 1- > -:_“::-.'r.'-- A
- 4 .u -
‘ . ” '....‘. t. -

"’!,"*"

o'_"v L N

.'c C - o'~

4.‘7"‘ :. ‘..‘ '. 1 .' ‘

N,

.
B
’

. '- e
™ ™ -
f

i Bl B 5E
& ‘.

AR

-

.'\',l v '.\' ",‘

17T LI R M

4

-~

N .

(N>

'y

"

'

v 3¢

- |

Why Datacenters?

* Consolidation
* Run many people’s workloads on the same infrastructure
e Use infrastructure more efficiently (higher utilization)
* Leverage workload synergies (eg., caching)

* Virtualization
* Build your own private infrastructure quickly and cheaply
 Move it around anywhere, anytime

* Automation
* No need for expensive, skilled IT workers
* Expertise is provided by the datacenter vendor

Types of Datacenters

e Supercomputers
* Compute intensive
e Scientific computing: weather forecast, simulations, ...

e Hyperscale (this lecture)
 |/O intensive => Makes for cool OS problems

* Large-scale web services: Google, Facebook, Twitter, ...

* Cloud

* Virtualization intensive
e Everything else: “Smaller” businesses (eg., Netflix)

Hyperscale Datacenters

* Hyperscale: Provide services to billions of users

* Users expect response at interactive timescales
* Within milliseconds

 Examples: Web search, Gmail, Facebook, Twitter

 Built as multi-tier application
* Front end services: Load balancer, web server
* Back end services: database, locking, replication

 Hundreds of servers contacted for 1 user request
* Millions of requests per second per server

Hyperscale: 1/0 Problems

Hardware trend

* Network & stoage speeds keep on increasing
* 10-100 Gb/s Ethernet
* Flash storage

* CPU frequencies don’t
¢ 2-4 GHz

* Example system: Dell PowerEdge R520

Intel X520 Intel RS3 RAID Sandy Bridge CPU
10G NIC 1GB flash-backed cache 6 cores, 2.2 GHz
2 us / 1KB packet 25 us / 1KB write

Hyperscale: OS 1I/0O Problems

OS problem

 Traditional OS: Kernel-level I/O processing => slow
 Shared |/O stack => Complex
* Layered design => Lots of indirection
* Lots of copies

Receiving a packet in BSD

Kernel

Stream Datagram
socket socket
TCP UDP ICMP
P

Receive queue

U

Receiving a packet in BSD

Stream
socket

TCP

UDP

ICMP

Kernel

IP

Receive queue<—

Datagram
socket

| etwork nerfce |
S

. Interrupt

1.1 Allocate mbuf
1.2 Enqueue packet
1.3 Post s/w
interrupt

Receiving a packet in BSD

Stream
socket

Kernel

UDP

Receive queue

ICMP :II

Datagram
socket

. S/W Interrupt

High priority

IP processing

TCP processing
Enqueue on socket

<&

Receiving a packet in BSD
pepicaton || Agplatin |

¥

Stream
socket
TCP UDP ICMP
P
Receive queue
Kernel

3. Application

Access control
Copy mbuf to user space

U

Sending a packet in BSD

Kernel

Stream Datagram
socket socket
TCP UDP ICMP
P

Receive queue

U

Sending a packet in BSD
Aeptction |

\

¥

Stream
socket

—
=

Application

Access control

Copy from user space to mbuf

Call TCP code and process

Possible enqueue on socket queue

TCP

UDP

ICMP

Kernel

Receive queue

U

Sending a packet in BSD
Aeptction |

Stream
socket

Kernel

UDP

ICMP

Receive queue

Datagram

socket

S/W Interrupt
Remaining TCP processing
IP processing

Enqueue on NIC queue

<&

Sending a packet in BSD
Aeptction |

Stream Datagram
socket socket
TCP UDP ICMP
P
Receive queue
<: 3. Interrupt
Send packet
Kernel m Free mbuf

| etwork nerfce |
S

Linux 1/O Performance

/ % OF 1KB REQUEST TIME SPENT \
. A HW 18% Kernel 62% App 20% 9 us
Redis
HW pp
s %
\ ET 139 Kernel 84% % 163 us

-~

Kernel

_

API
Naming

Access control

1/O Processing

Protection

Multiplexing

Resource limits

|/O Scheduling

Copying

A/
~

Data
Path

10G NIC
2 us / 1KB packet

RAID Storage
25 us / 1KB write

Arrakis Datacenter OS

e Can we deliver performance closer to hardware?

* Goal: Skip kernel & deliver I/O directly to applications
* Reduce OS overhead

* Keep classical server OS features
* Process protection
* Resource limits
* |/O protocol flexibility
* Global naming

* The hardware can help us...

Hardware I/O Virtualization

e Standard on NIC, emerging on RAID

* Multiplexing e y————
e SR-IOV: Virtual PCl devices
w/ own registers, queues, INTs User-level | | User-level
VNIC 1 VNIC 2

* Protection

S
e IOMMU: %Ratellmltersé

Devices use app virtual memory Packet filters

* Packet filters, logical disks:
Only allow eligible I/0 g }

* /O Scheduling E ?

* NIC rate limiter, packet schedulers Network

How to skip the kernel?

Naming Resource limits

Kernel Access control /O Scheduling

|/O Processing Copying

— S x
Redis |
\ N Library y
- J
g)

VAN

k Protection

-~

1/O Devices

o J

Data
Path

Arrakis |/O Architecture

Control Plane Data Plane

\\
4

Redis

API

- N
Kerne \\)
Data Path
4 N
NG ' /O Devices

Protection

Multiplexing

\ |/O Scheduling /

Arrakis Control Plane

* Access control

* Do once when configuring data plane
* Enforced via NIC filters, logical disks

e Resource limits
* Program hardware |/O schedulers

* Global naming
* Virtual file system still in kernel
e Storage implementation in applications

Kernel

Access control

Resource limits

/II
o

Global Naming

1 Virtual Storage Area

/tmp/lockfile
/var/lib/key value.db
/etc/config.rc

Indirect IPC interface

open(“/etc/config.rc”)

Storage Data Plane: Redis

Persistent Data Structures

 Examples: log, queue
* Operations immediately persistent on disk

Benefits:
* In-memory = on-disk layout
* Eliminates marshaling

e Metadata in data structure
e Early allocation
e Spatial locality

» Data structure specific caching/prefetching

* Modified Redis to use persistent log: 109 LOC changed

Redis Latency

 Reduced in-memory GET latency by 65%

HW Kernel App
18% 62% 20% Jus

HW liblO App
33% 35% 32%

Linux

4 us

Arrakis

* Reduced persistent SET latency by 81%

: HW Kernel pp
L t4
inux (ext4) 13% 4% 9% 163 us

8
HW [l:1(e App
77% i 15%

Arrakis 31 us

Redis Throughput

* Improved GET throughput by 1.75x
e Linux: 143k transactions/s
* Arrakis: 250k transactions/s

* Improved SET throughput by 9x
e Linux: 7k transactions/s
* Arrakis: 63k transactions/s

memcached Scalability

1200

1000

800

Throughput

(k transactions/s) 600

400

200

0

10Gb/s interface limit

Number of CPU cores

M Linux ™ Arrakis

Summary

* OS is becoming an 1/0O bottleneck
* Globally shared I/O stacks are slow on data path

* Arrakis: Split OS into control/data plane
 Direct application I/0O on data path
* Specialized I/O libraries

* Application-level I/O stacks deliver great performance
e Redis: up to 9x throughput, 81% speedup
* Memcached scales linearly to 3x throughput

Interested?

* | am recruiting PhD students
* | work at UT Austin

* Apply to UT Austin’s PhD program:

http://services.cs.utexas.edu/recruit/grad/frontmatter/announcement.html

