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This Lecture

 What’s a datacenter
 Why datacenters
* Types of datacenters

* Hyperscale datacenters
* Major problem: Server |/0 performance

* Arrakis, a datacenter OS
* Addresses the |/O performance problem (for now)
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Why Datacenters?

* Consolidation
* Run many people’s workloads on the same infrastructure
e Use infrastructure more efficiently (higher utilization)
* Leverage workload synergies (eg., caching)

* Virtualization
* Build your own private infrastructure quickly and cheaply
 Move it around anywhere, anytime

* Automation
* No need for expensive, skilled IT workers
* Expertise is provided by the datacenter vendor



Types of Datacenters

e Supercomputers
* Compute intensive
e Scientific computing: weather forecast, simulations, ...

e Hyperscale (this lecture)
 |/O intensive => Makes for cool OS problems

* Large-scale web services: Google, Facebook, Twitter, ...

* Cloud

* Virtualization intensive
e Everything else: “Smaller” businesses (eg., Netflix)



Hyperscale Datacenters

* Hyperscale: Provide services to billions of users

* Users expect response at interactive timescales
* Within milliseconds

 Examples: Web search, Gmail, Facebook, Twitter

 Built as multi-tier application
* Front end services: Load balancer, web server
* Back end services: database, locking, replication

 Hundreds of servers contacted for 1 user request
* Millions of requests per second per server



Hyperscale: 1/0 Problems

Hardware trend

* Network & stoage speeds keep on increasing
* 10-100 Gb/s Ethernet
* Flash storage

* CPU frequencies don’t
¢ 2-4 GHz

* Example system: Dell PowerEdge R520

Intel X520 Intel RS3 RAID Sandy Bridge CPU
10G NIC 1GB flash-backed cache 6 cores, 2.2 GHz
2 us / 1KB packet 25 us / 1KB write



Hyperscale: OS 1I/0O Problems

OS problem

 Traditional OS: Kernel-level I/O processing => slow
 Shared |/O stack => Complex
* Layered design => Lots of indirection
* Lots of copies



Receiving a packet in BSD

Kernel
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socket socket
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Receiving a packet in BSD
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Receiving a packet in BSD
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Receiving a packet in BSD
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Sending a packet in BSD
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Sending a packet in BSD
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Sending a packet in BSD
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Sending a packet in BSD
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Linux 1/O Performance

/ % OF 1KB REQUEST TIME SPENT \
. A HW 18% Kernel 62% App 20% 9 us
Redis
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Arrakis Datacenter OS

e Can we deliver performance closer to hardware?

* Goal: Skip kernel & deliver I/O directly to applications
* Reduce OS overhead

* Keep classical server OS features
* Process protection
* Resource limits
* |/O protocol flexibility
* Global naming

* The hardware can help us...



Hardware I/O Virtualization

e Standard on NIC, emerging on RAID

* Multiplexing e y————
e SR-IOV: Virtual PCl devices
w/ own registers, queues, INTs User-level | | User-level
VNIC 1 VNIC 2

* Protection

S
e IOMMU: %Ratellmltersé

Devices use app virtual memory Packet filters

* Packet filters, logical disks:
Only allow eligible I/0 g }

* /O Scheduling E ?

* NIC rate limiter, packet schedulers Network



How to skip the kernel?
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Arrakis |/O Architecture

Control Plane Data Plane
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Arrakis Control Plane

* Access control

* Do once when configuring data plane
* Enforced via NIC filters, logical disks

e Resource limits
* Program hardware |/O schedulers

* Global naming
* Virtual file system still in kernel
e Storage implementation in applications

Kernel

Access control

Resource limits

/II
o




Global Naming

1 Virtual Storage Area

/tmp/lockfile
/var/lib/key value.db
/etc/config.rc

Indirect IPC interface

open(“/etc/config.rc”)



Storage Data Plane: Redis

Persistent Data Structures

 Examples: log, queue
* Operations immediately persistent on disk

Benefits:
* In-memory = on-disk layout
* Eliminates marshaling

e Metadata in data structure
e Early allocation
e Spatial locality

» Data structure specific caching/prefetching

* Modified Redis to use persistent log: 109 LOC changed



Redis Latency

 Reduced in-memory GET latency by 65%

HW Kernel App
18% 62% 20% Jus

HW liblO App
33% 35% 32%

Linux

4 us

Arrakis

* Reduced persistent SET latency by 81%

: HW Kernel pp
L t4
inux (ext4) 13% 4% 9% 163 us

8
HW [l:1(e App
77% i 15%

Arrakis 31 us



Redis Throughput

* Improved GET throughput by 1.75x
e Linux: 143k transactions/s
* Arrakis: 250k transactions/s

* Improved SET throughput by 9x
e Linux: 7k transactions/s
* Arrakis: 63k transactions/s



memcached Scalability
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Summary

* OS is becoming an 1/0O bottleneck
* Globally shared I/O stacks are slow on data path

* Arrakis: Split OS into control/data plane
 Direct application I/0O on data path
* Specialized I/O libraries

* Application-level I/O stacks deliver great performance
e Redis: up to 9x throughput, 81% speedup
* Memcached scales linearly to 3x throughput



Interested?

* | am recruiting PhD students
* | work at UT Austin

* Apply to UT Austin’s PhD program:

http://services.cs.utexas.edu/recruit/grad/frontmatter/announcement.html



