


RuSt

A new systems programming language
1.0 was released on May 15th

* been in development 5+ years

e releases every 6 weeks

Pursuing the tritecta: safe, concurrent, fast
Gone through many radical iterations

Development is open source but sponsored by Mozilla

2



May

| ots of interest
| ots of commits /

\ rust-lang / rust @ Unwatch v 754 v Unstar 10,925 y Fork 2,136

a safe, concurrent, practical language http://www.rust-lang.org

<> Code |
42,611 15 24 1,009

|

ots of contributors



L ots of commits

N

rust-lang / rust

46,052 commits

yranches

August

A safe, concurrent, practical language. http://www.rust-lang.org

27 releases

Lots of

| ots of interest

/

® Unwatch~ 912 W Unstar 13,197 ¥ Fork 2555
<> Code I
1,144 contributors
- . ssues 2,205

contributors



September

| ots of interest
| ots of commits /

\ rust-lang / rust ©® Unwatc hv 959  JUnstar 14200 Y Fork 2773
A safe, concurrent, practical language. http://www.rust-lang.org

48,151 commits 7 branches 29 releases 1,223 contributors

ots of contributors



Goals

Help you understand why Rust is interesting in
* theory
* practice

Cover important features of Rust and how they
improve the state of systems programming

Discuss tooling



Rust Is a systems programming language
that runs blazingly fast, prevents almost all
crashes”, and eliminates data races.

Show me more!



Featuring

zero-cost abstractions
move semantics
guaranteed memory safety
threads without data races
trait-based generics
pattern matching

type inference

minimal runtime

efficient C bindings



How? Types!



Type Systems

Types allow us to reason statically about program
behavior

Type checking is a form of logical reasoning

We want to verify the consistency of a statement
(program)

Like logics, type systems can come in many flavors,
some more exotic then others

10



Systems Programming

Fine grained memory control
/ero-cost abstractions

Pay for what you use

Control of scheduling
Performance is a necessity

 Usually implies "unsafe’

11



Garbage Collection

Fully automatic; very little programmer overhead
No control over memory layout or reclamation

Doesn't fix the resource problem (i.e., files,
sockets)

* Non-memory resources are peril to the non-
determinism of GC

12



malloc + free

 Manual; lots of programmer overhead

* EXxplicit control over allocation, layout, and
reclamation

* Ad-hoc reasoning about the lifetime and ownership
of an allocation is critical when doing this; but
fallible

13



Memory statically

* What if we could do our reasoning about
deallocations statically & automatically

 Can we encode our reasoning in a type system?

 \What would it look like”

14



Core Concepts

- Ownership

* Borrowing

e |ifetimes

e [raits



Ownership

 Each value is owned by stack frame.

e Fach use of a value "consumes it";: once consumed
it has in essence gone out of scope

* |In practical terms, assignment, function calls,
pattern matching, all consume the value(s) used

16



fn main() {
printin!("Hello World!");

}

17



fn find_max(v: Vec<i32>) -> Option<&i32> {
v.into_iter().max()

}

fn main() {
let v =vecl![4,3,2,1,5,6,10];
printin!("{:?}", find_max(v));
printin!("{:?}", v); // error: use of moved value: v’

}

18



fn print_vec_with_head(v: Vec<i32>) {
printin!("{:?}", v)
Y

fn main() {
let v =vecl[4,3,2,1,5,6,10];
print_vec_with_header(v);
// can't use v ever again

}

19



Core Concepts

* Ownership

-+ Borrowing

e |ifetimes

e [raits



BOrrowing

e |f every operation consumes a value how do | write
programs that do more than one thing”

* Borrowing allows one to ‘lease’ data for a period of
time

21



struct Vec3 { x: 132, y: 132, z: 132 }

fnis_equal(v1: Vec3, v1: Vec3) -> bool {
Vl.X ==Vv2.X &&
viy ==v2.y &&
vl.z==Vv2.2z

}

fn main() {
let x = Vec3::new(1,2,3);
lety = Vec3::new(3,2,1);
let is_eq = is_equal(x, y);
printin!("{:?}", x); // error value moved
printin!("{:?}", y); // error value moved

22



This function is the problem:

fn vec_eq(v1: Vec3, v1: Vec3) -> bool {
V1. X == Vv2.X &&
viy ==v2.y &&
vl.z==Vv2.z

23



fn vec_eq(v1: ~Vec3, v2:

vl X ==v2.X &&
viy ==Vv2.y &&
vi.z ==v2.z

24

|

Vec3) -> bool {



struct Vec3 { x: 132, y: 132, z: 132 }

fn vec_eq(vil: &Vec3, vi1: &Vec3) -> bool {
vl.X ==v2.X &&
viy ==v2.y &&
vl.z ==Vv2.z

}

fn main() {
let x = Vec3::new(1,2,3);
lety = Vec3::new(3,2,1);
// borrow x & y
let is_eq = vec_eq(&x, V);
// un-borrow x & y
printin!("{:?}", x); // works!
printin!("{:?}", y); // works!

25



let mut x = 5;

let y = &mut x; // -+ &mut borrow of x starts here
/1

Y +=1; /|
/1

printin!("{}", x); // -+ - try to borrow x here
// -+ &mut borrow of x ends here

20



let mut x = 5;

{
let y = &mut x; // -+ &mut borrow starts here
Y +=1; /|

} // -+ ... and ends here

printin!("{}", x); // <- try to borrow x here

27



BOrrowing

e References have two flavors: immutable & T and
mutable &mut T

* The type checker enforces that we can have any
number of immutable readers, but only a single
mutable writer

* Solves problems for both single threaded and
multithreaded programs

28



Core Concepts

 Ownership

* Borrowing

- Lifetimes

e [raits



fn bad_ret() -> &i32 {
let x = 10; &X

}

fn main() {
let x = bad_ret();
foo_bar();
// where does x point to?

}

30



| Ifetimes

* Memory always has a lifetime
e Lifetimes are non-deterministic in the presence of GC

e Lifetimes of stack variables are usually known but
not enforced

e Lifetimes of heap variables are unknown and not
enforced

* A fundamental question: when will memory be freed?

31



fn example1() {
letx = 1; // X is put on the stack
lety =vecl![1,2,3]; //yis put on the stack
let z = Vec3::new(1,2,3); // z is put on the stack

}

/l entire stack frame is freed

32



// error: missing lifetime specifier [E0106]
fn bad_ret() -> &i32 {
let x = 10; &x

}

fn foo_bar() { = }

fn main() {
let x = bad_ret();
foo_bar();
// where does x point to?

}

33



/l <anon>:2:18: 2:19 error: x does not live long enough
[l <anon>:2 letx =10; &x

fn bad_ret<'a>() -> &'a 132 {
let x = 10; &x

}

fn foo_bar() {}

fn main() {
let x = bad_ret();
foo_bar();
// where does x point to?

}

34



struct WrapsRef<'a> {
field: &'a 132
Y

fn pass_through<'a>(x: &'a i32) -> WrapsRef<'a> {
WrapsRef { field: x }

}

35



INnterlude

» Before tackling traits we will cover necessary
language features

* Functions
e Datatypes
* Methods

* Loops

36



fn print_int(i : 132) {
printin!("{}", 1)
¥

fn print_debug<T: Debug=>(t: T) {
printin!("{:?}", t);
}

fnid<A>(x: A) >A{x}

fn abs(i: i132) {
fi>0{
return i
}else {
returni * -1

}
}

37



BOX

* A singly owned heap allocation

* A value of type Box<T> is a pointer to a value of
type T

 The underlying T Is deallocated when the pointer
goes out of scope

38



struct BoxWrapper<T=> {

b: Box<T>
Y
fn main() {

let x = Box::new(10);

let bw = BoxWrapper{ b : x };
Y

39



structs & enums

 [wo ways to define data types
e Structs are products (no runtime tag)

 Enums are sums and products (runtime tag)

40



struct FileDescriptor(i32);
struct Pair<A, B>(A, B);

struct Vec3 {
X: 132,
y: 132,
Z: 132

41



enum List<A> {
Nil,
Cons(A, Box<List<A>>)

}

enum Tree<A> {
Tip,
Branch(A, Box<Tree<A>>, Box<Tree<A>>)

}

42



enum Option<T>{
None,
Some(T)

}

43



Methods

e Two flavors
e |nherent methods
e Trait methods

 We will look at inherent right now, trait methods a
ittle later

* |Inherent methods are syntactic sugar, and provide
some name spacing

44



Inherent Methods

iImpl<A> List<A> {
fn head(&self) -> Option<&A=> {
match self {
&Cons(ref x, 1= xs) == Some(x),
&Nil == None

}
}

fn tail(&self) -> Option<&List<A>> {

match self {
&Nil => None,
&Cons(_, xs) => Some(&*xs)

45



iImpl<T> Option<T> {

fn unwrap_or(self, default: T) -> T {
match self {
None => default,
Some(X) => x
Y
}

46



| O0PS

e [here are three types of loops:
e loop{...}=>whiletrue{...}
» forxinxs{...}

- while guard{ ... }

47



fn runs_forever() -> ! {
loop {
printin!("!")
Y

}

48



Iet V — VeC![Hone", "TWO", ||Threell];
forcinv{

printin!("{}", c);
}

49



let mut sum = 0;
let mut i = 0;

let v = vec![1,3,5,7,10];
while i < v.len() {

sum += V[i];
| +=1;

50



iterators

* Lazy iteration

e Provides an efficient interface for common
functional combinators

* Performance is equivalent to loops

51



fn main() {
let iter = (0..).filter(Ix| x % 2 == 0).take(5);
foriin iter{
printin!("{}", 1)
¥
Y

52



Errors

Return value error handling
No exceptions
panic! terminates the process

Monadic flavor

53



enum Result<T, E> {
OK(T),
Err(E)

Y

o4



use std::fs::File;
use std::io;
use std::io::prelude::”;

struct Info {
name: String,
age: 132,
rating: 132,

Y

fn write_info(info: &Info) -> io::Result<()> {
let mut file = try!(File::create("my_best_friends.ixt"));

try!(writeln!(&mut file, "name: {}", info.name));
try!(writeln!(&mut file, "age: {}", info.age));
try!(writeln!(&mut file, "rating: {}", info.rating));

Ok(();

95



Core Concepts

* Ownership

* Borrowing

e |ifetimes

- Traits



Traits

Declare abstract interfaces

New traits can be implemented for existing types
Old traits can be implemented for new types
Inspired by Haskell type classes

Enable type level programming

S/



trait Show {
fn show(&self) -> String;

}

58



impl Show for String {
fn show(&self) -> String {
self.clone()

}
}

59



impl<A: Show> Show for List<A> {
fn show(&self) -> String {
match self {
&Nil == "Nil".to_string()
&List(ref head, ref tail) =>
format!("{:?} :: {:?}", head, tail.show())

60



fn print_me<A: Show=>(a: A) {
printin!("{}", a.show())

}

61



#[derive(...)]

e Automatically implement common functionality for
your types

e et the compiler write the boilerplate tfor you

 Works like Haskell's deriving mechanism

62



#[derive(Debug, PartialEq, Hash, Eq, PartialOrd, Ord)]
struct User {

name: String,

age: i32
Y

// Debug allows us to use the{ '?} formatter

// PartialEq allows us to use ==

/[ Eq is transitive, reflexive and symmetric equality
// Hash provides hashing

// Ord and PartialOrd provide ordering

63



Marker lraits

 Copy

e Send

e Sized

* Sync



Copy

#[lang="copy"]

pub trait Copy : Clone {
[/ Empty.

Y

65



Clone

fn main() {
let v =vec![1,2,3];
let v2 = v.clone();
let owned_iter = v2.into_iter();
// v is still valid here

66



Copy

#[derive(Debug, Clone)]
struct MyType;

// Marker to compiler that type can be copied
impl Copy for MyType {}

fn main() {
let x = MyType;
let y = x; // copy occurs here
printin!("{:?}", x);

Y

67



Copy

#[derive(Debug, Copy, Clone)]
struct MyType;

fn main() {
let x = MyType;
let y = x; // copy occurs here
printin!("{:?}", x);

}

68



Send

e types that implement Send can be transferred
across thread boundaries

 implemented by the compiler, a type is Send if all of
its components also implement Send

69



pub fn spawn<F, T>(f: F) -> JoinHandle<T>
where F: FnOnce() -> T,
F: Send + 'static,
T: Send + 'static

70



Sized

* by default every type is Sized
* represents types with statically known size

* needed to differentiate between dynamically sized
types

71



SYNC

« Atype T is Sync if &T is thread safe

* allows for the existence of types that are not thread
safe

e primary exceptions are:

e types with interior mutability

- Re<T>

/2



Drop

* Allows the running of "clean-up" code
* Close a file or socket
* Delete a vector's underlying allocation

* Deallocate a heap value

/3



pub trait Drop {
fn drop(&mut self);

}

74



pub struct FileDesc {
fd: c_int,

}

impl Drop for FileDesc {

fn drop(&mut self) {
let _ = unsafe { libc::close(self.fd) };

}
}

79



Slices

let v =vec![1,2,

printin!("{:?7}", v
printin!("{:?}", v
printin!("{:?}", v
printin!("{:?}", v

3];
0..]);
1..2]);
..2]);

2]);

/6



Some(1).map(Ix! x + 1) // == 2

77



Rce< >

* A reference counted smart pointer
* Implemented In the standard library

e Safe interface around efficient "'unsafe” operations

/8



Vlacros

e Comes in two flavors:

 Compiler plugin (we won't talk about the details
of these)

- macro_rules!

79



try!(e)

(match e {
Result::Ok(val) => val,
Result::Err(err) == {
return Result::Err(From::from(err))
Y
})

80



FF

e Binding to foreign code is essential
 Can't rewrite all the code
* Most system libraries are written in C/C++

 Should allow you to encapsulate unsafe code

81



#[feature(libc)]
extern crate libc:

mod foreign {
use libc::{c_char};

extern {
pub fn getchar() -> c_char;

}
}

fn getchar() -> char {
unsafe { std::char::from_u32(foreign::getchar() as u32).unwrap() }

}

fn main() {
let ¢ = getchar();
printin!("{:?}", c);
Y

82



Tooling

83



Tooling

e Jooling is a critical component of when using any
programming language

* Jooling can drastically impact people's perception
of the language; examples:

- Sht
- make

- cabal

84



lesting

Testing is baked into the Rust compiler
Tests can be intermixed with code

Higher level frameworks can be built on the
exposed primitives

» https://github.com/reem/stainless

85


https://github.com/reem/stainless

#[test]
fn it_works() {
assert!(false);

}

86



#[test]

#[should_panic]

fn it_works() {
assert!(false);

}

37



#[test]
#[should_panic(expected = "assertion failed")]
fn it_works() {

assert_eq!("Hello", "world");

}

88



describe! stainless {

}

before_each {
/[ Start up a test.
let mut stainless = true;

}

it "makes organizing tests easy" {
// Do the test.
assert!(stainless);

}

after_each {
// End the test.
stainless = false;

}

bench "something simple" (bencher) {
bencher.iter(ll 2 * 2)

}

describe! nesting {
it "makes it simple to categorize tests" {
/l It even generates submodules!
assert_eq!(2, 2);
}
¥

89



mod stainless {
#[test]
fn makes_organizing_tests_easy() {
let mut stainless = true;
assert!(stainless);
stainless = false;

}

#[bench]
fn something_simple(bencher: &mut test::Bencher) {
bencher.iter(ll 2 * 2)

}

mod nesting {
#[test]
fn makes_it_simple_to_categorize_tests() {
assert_eq!(2, 2);
Y

}
}

90



cargo

Why Cargo exists

Cargo is a tool that allows Rust projects to declare their various dependencies, and ensure that you'll always get a
repeatable build.

To accomplish this goal, Cargo does four things:

Introduces two metadata files with various bits of project information.

Fetches and builds your project's dependencies.

Invokes rustc or another build tool with the correct parameters to build your project.
Introduces conventions, making working with Rust projects easier.

91



Cargo.toml

[package]
name = "tower"

version = "0.1.0"
authors = ["'Jared Roesch <roeschinc@gmail.com>"]

92


mailto:roeschinc@gmail.com

Depenaencles

[dependencies]
rustc-serialize =
docopt = "™
docopt_macros = "*"
toml — h*n

lllll

lllll

IIIII

93



Depenaencles

Pin a version

[dependencies]

rustc-serialize = "0.3.14" —
dOCOpt —_ 1n*ll

docopt_macros = "*"

t0m| — h*N

csv = "~0.14" < 0.14.0 <0.15.0

threadpool = "*0"

N ~=0.0.0 <1.0.0

94



Dependencies

[dependencies.color]
git = "https://github.com/bjz/color-rs"

95


https://github.com/bjz/color-rs

More on cargo

* Rust's SemVer: https://github.com/rust-lang/semver

« Cargo: https://github.com/rust-lang/cargo

* Crates.io: https://crates.io/

96


https://github.com/rust-lang/semver
https://github.com/rust-lang/cargo
https://crates.io/

rustaoc

e Documentation tool
 Completely searchable (no Hoogle equivalent yet)
e Emits static site with docs for:

Modules

Datatypes

Traits

Impls
e efc

97



136
LSS
138
139
140
141
142
143
144
145
146
147
148
149
150
1Ll
52!
153
154
155
156
L1/
158
159
160
161
162
163

/1]

/// Readers are intended to be composable with one another. Many objects
/// throughout the I/0 and related libraries take and provide types which
/// implement the "Read’ trait.

#[stable(feature = "rustl", since = "1.0.0")]

pub trait Read {

/11
/17
/117
/1]
/1]
/1]
/1]
/117
/117
/1]
/1]
/117
/1]
/11
/117
/1]
/1]
/117
/1]
/1]
/117

/1]

Pull some bytes from this source into the specified buffer, returning
how many bytes were read.

This function does not provide any guarantees about whether it blocks
waiting for data, but if an object needs to block for a read but cannot
it will typically signal this via an "Err’ return value.

If the return value of this method is "Ok(n)", then it must be

guaranteed that '0 <= n <= buf.len() . A nonzero 'n° value -indicates

that the buffer "buf’® has been filled in with 'n° bytes of data from this
source. If 'n’ is '0°, then it can indicate one of two scenarios:

1. This reader has reached 1its "end of file" and will likely no longer
be able to produce bytes. Note that this does not mean that the
reader will *alwaysx no longer be able to produce bytes.

2. The buffer specified was 0 bytes 1in length.

No guarantees are provided about the contents of “buf’' when this
function 1is called, implementations cannot rely on any property of the
contents of "buf' being true. It is recommended that +implementations
only write data to "buf® instead of reading 1its contents.

98



Trait std::io::Read [-1[+] [src]

td::io::Read
pub trait Read { 7
fn read(&mut self, buf: &mut [u8]) -> Result<usize>;

fn read_to_end(&mut self, buf: &mut Vec<u8>) -> Result<usize> { ... }

fn read_to_string(&mut self, buf: &mut String) -> Result<usize> { ... }

fn by_ref(&mut self) -> &mut Self where Self: Sized { ... }

fn bytes(self) -> Bytes<Self> where Self: Sized { ... }

fn chars(self) -> Chars<Self> where Self: Sized { ... }

fn chain<R: Read>(self, next: R) -> Chain<Self, R> where Self: Sized { ... }
fn take(self, limit: u64) -> Take<Self> where Self: Sized { ... }

fn tee<W: Write>(self, out: W) -> Tee<Self, W> where Self: Sized { ... }

[ -1 A trait for ohiecte which are hvte-ariented cnnirces

99



[-] fn chain<R: Read>(self, next: R) -> Chain<Self, R>
where Self: Sized

Creates an adaptor which will chain this stream with another.

The returned Read instance will first read all bytes from this object until EOF is encountered. Afterwards the output is
equivalent to the output of next.

-] fn take(self, limit: u64) -> Take<Self>
where Self: Sized

Creates an adaptor which will read at most 1imit bytes from it.

This function returns a new instance of Read which will read at most 1imit bytes, after which it will always return EOF
(0k(©) ). Any read errors will not count towards the number of bytes read and future calls to read may succeed.

100



Implementors

impl Read for
impl<'a> Read
impl<R: Read>

File
for &'a File
Read for BufReader<R>

impl<S: Read + Write> Read for BufStream<S>

impl<'a> Read
impl<'a> Read
impl Read for

for Cursor<&'a [u8]>
for Cursor<&'a mut [u8]>
Cursor<Vec<u8>>

impl<'a, R: Read + ?Sized> Read for &'a mut R
impl<R: Read + ?Sized> Read for Box<R>

impl<'a> Read
impl Read for
impl Read for
impl Read for
impl<'a> Read
impl<T: Read,
impl<T: Read>
impl<R: Read,
impl Read for
impl<'a> Read
impl Read for
impl Read for

for &'a [u8]

Empty

Repeat

Stdin

for StdinLock<'a>

U: Read> Read for Chain<T, U>
Read for Take<T>

W: Write> Read for Tee<R, W>
TcpStream

for &'a TcpStream
ChildStdout

ChildStderr

101



Module std::result [-1[+][src]

(-] Error handling with the Result type

Result<T, E> isthe type used for returning and propagating errors. It is an enum with the variants, Ok (T) , representing success
and containing a value, and Err (E) , representing error and containing an error value.

enum Result<T, E> {
Ok(T),
Err(E)

Functions return Result whenever errors are expected and recoverable. In the std crate Result is most prominently used for I/O.

A simple function returning Result might be defined and used like so:

102



Read

Results for Read

std::ptr:read

std:io:

std::io::Read::read
std::fs::OpenOptions::read
std::sync::StaticRwLock:read
std::sync::RwLock::read
std::net::Shutdown::Read
std::slice:read
std::boxed::Box::read
std::fs:File:read
std::io:Tee:read
std::io:Take:read
std::io::Chain:read
std:io:BufStream:read

std::io:Cursor::read

Reads the value from “src” without moving it. This leaves the ...
A trait for objects which are byte-oriented sources.
Pull some bytes from this source into the specified buffer, re...
Sets the option for read access.
Locks this rwlock with shared read access, blocking the curre..
Locks this rwlock with shared read access, blocking the curre..

Indicates that the reading portion of this stream/socket sho...

103



OS Programming

#[no_std]

ABI

allocators
libcore
language items
#[no_mangle]
extern

new types

safe interfaces

104



Demo Time

105



Continuing with Rust

* The Rust Programming Language: http://doc.rust-
lang.org/book/

* #rust on irc.mozilla.org

e http://www.reddit.com/r/rust

106


http://doc.rust-lang.org/book/
http://irc.mozilla.org
http://www.reddit.com/r/rust

Thank you for your time! Questions”

107



