Ryan Russell, CSE 451 (15au) http://ryanrussell.me/portfolio/os/

The JOS Window
System

This is a project to add a Window server and GUI
programs to the learning operating system JOS. The
original implementation was mostly in the kernel,
but the final implementation moves most of the
code to user mode. Unfortunately, I can’t share the
code because it is part of an assignment, and the
writeup might not make sense if you don’t know

how JOS works, but there are a few pictures instead.

Hardware initialization

The display adapter is set to
graphics mode using VBE. These m

extensions are a standardized way

for the OS to ask for functionality

from the VGA adapter. Though

recent versions deprecated fixed mode numbers in
favor of querying the adapter to find which modes it
supports, I shortcutted by asking for a known mode
and hardcoding its settings. I chose mode 103h (or
ox103). This is a Super VGA resolution of 800x600,
with 1 byte per pixel. Colors are not separated into
channels, but instead are indexes in standard color

palette.

The mouse is a PS/2 device, so it communicates

over IO port ox60 and 0x64, just like the keyboard.

During kernel initialization, I send some commands

Ryan Russell, CSE 451 (15au)

http://ryanrussell.me/portfolio/os/

to activate the mouse so it starts generating
interrupts. I had to make sure the kernel only tries
to read on those ports when there is an interrupt,
and make sure that is knows which one it expects.
For the longest time, moving the mouse while
pressing a key would break everything. After much
debugging, I realized that the hardware sometimes
generates keyboard or mouse interrupts before the
data is ready. In those cases, the driver should simply
ignore it. Every mouse event needs 3 bytes of data,
but if the keyboard is also being pressed, the mouse
interrupt may fire 4 times, and the first time the
keyboard data will be in the input. A bitin the
status register shows whether the data is actually for
the mouse. Once I figured that out, my system was
no longer mouse » keyboard, but both could be

used at the same time.

I save mouse events in a circular buffer, and added
the syscall sys_get_event. Every environment has
a current index in the buffer, and sys_get_event
returns the next unread event, if any. If the
environment has fallen behind (there are only 1024
events in the buffer), it simply skips to the oldest
one available and prints a warning. It is up to the
user programs to not react to events when they are

not the active window.

Images

256 colors is not a lot, but I like the simplicity of a
flat framebuffer and a single byte per pixel. This
simplified much of the drawing code, and I like the

aesthetic. I imported the palette into GIMP (a fancy
way of saying I used the color picker on each color
in the picture above), and then I could export
dithered bitmaps. The bitmaps saved in exactly the

right format: after the header, every byte was a pixel,

and the value of each pixel is exactly what the VGA
adapter expects. My bitmap “parser” simply
interprets the first part of the file using the
bitmapv4 format to find the size of the image and
the offset to the pixel data. It does some small sanity
checks, but ignores the palette data and assumes the
image is saved in indexed mode using the correct
palette. I could do more with this, but bitmaps can

also support compression including run-length

encoding or even JPG/PNG(!). (A bitmap file may

just be a header with a bit saying that the image data

is actually a JPEG). Implementing all of that would

have been more work.

I also have 3 other image formats for specialized
data. The mouse pointer image is just an array of

integers.

#define _ 0
#define X 1
#define O 2

static const uint8 t const mouse pic[] = {

xI_I_I_I_I_I_I_I_I_I_I_I_I
XIXI_I_I_I_I_I_I_I_I_I_I_I
XIOIXI_I_I_I_I_I_I_I_I_I_I
X’OIOIXI_I_’_I_I_’_I_’_I_I
xlolOIOIXI_I_I_I_I_I_I_I_I
XIOIOIOIOIXI_I_I_I_I_I_I_I
XIOIOIOIOIOIXI_I_I_I_I_I_I
XIOIOIOIOIOIOIXI_’_I_I_I_I
XIOIOIOIOIOIOIOIXI_I_I_I_I
XlolOIOIOIOIOIOIOIXI_I_I_I
XIOIOIOIOIOIOIOIOIOIXI_I_I
XIOIOIOIOIOIOIOIOIOIOIXI_I
XIOIOIOIOIOIOIXIXIXIXIXI_I
XIOIOIOIXIOIOIXI_I_I_I_I_I
XIOIOIXI_IXIOIOIXI_I_I_I_I
XIOIXI_I_IXIOIOIXI_I_I_I_I
X’XI_I_I_I_’XIOIO’XI_’_I_I
_I_I_I_I_I_IXIOIOIXI_I_I_I
_I_I_I_I_I_I_IXIXI_I_I_I_

}i

#undef

#undef X

#undef O

This is because it must support 2 colors and
transparency. I couldn’t load files from the disk
until labs, so I didn’t implement it this way, but a
better way would be to load it from a bitmap and

pass a chroma key color to use as transparency.

I have two different fonts as well. I added the fixed
width font very early — before I had any windowing,

I had a graphics mode terminal emulator to replace

the CGA output. Because I didn’t even have bitmap
support, let alone disk access, I created a Python
script which takes fixed-width font images in the
format dwarf fortress expects (a 16x16 grid of
characters). The dwarf fortress Tileset Repository
had a bunch of good fonts. The Python script
outputs a C header file which has an array of all 256
characters. Each character is an array of
FONT_HEIGHT integers, and each integer is a bit field
saying which pixels are set. This means it can
support up to 32 pixel wide fonts, but the terminal

uses an 8x12 font. I could re-implement the Python

script in C and have it load as a bitmap file, or
change the font-rendering entirely to bitmap

drawing, but this worked, so it wasn’t a priority.

Proportional fonts came later, but they use a similar

format. I created an image file that contains all of

the printable ASCII characters in order separated by
red lines. A Python script reads the image and
creates a bit-field of the characters just as in the
fixed-width font, but it also saves the width of each
character. I think that I used Tahoma for the font.

This could also be ported to C and work on bitmap
files.

The Windowing
System

X - O QEMU

M Terminal
» widget

Armed with graphics primitives, I built the

windowing system. Before I had IPC working, this
was implemented in the kernel and used syscalls.
However, I was able to move it to user-mode based

on the design of JOS’s usermode filesystem server.

Like the environments in the kernel, I create an
array of Window objects. The windows have
location information, an id, an owner, and two

buffers. The buffers are allocated on demand (I tried

statically allocating all the buffers at first, but it was

more RAM than the OS could technically support).
Just like the environments, the window’s ID mod
ox100 is its index in the window list. When a
window is destroyed, its ID increments by oxroo,

that way I don’t re-use window IDs.

Windows are stored in doubly-linked lists.
Redrawing portions of the screen moves from the
bottom window to the top window and redraws the
part of the window that overlaps with the dirty
region. The windows and the screen are double-
buffered. The buffer given to client programs is not
the buffer used to redraw the screen. The client
must call WINDOW_REDRAW to copy the contents of (a
part of) the buffer to the actual window bufter. I
also composite all the windows in a temporary
buffer before copying them to the screen. Clicking

on a window pulls it to the front of the list.

I wanted to implement fancy things like transparent
windows. If T had transparency in windows, I could
make the mouse pointer a window as well, and
make it always stay on top, just like the desktop
background which is a window which always stays

on the bottom. I could also add drop-shadows and

other effects on the edge of the windows. The VGA
palette has 9 colors which are pure black. Some of
those could be re-purposed as transparent, or I

could provide a chroma key. Performance was the

primary reason I didn’t — memcpy uses fast x86
instructions that can copy page-by-page instead of
byte-by-byte. Doing a conditional copy depending
on whether the pixel is transparent would require
byte-by-byte copying or SIMD instructions and is
unbearably slow. A solution would be to require
windows to opt into special rendering, but for now

the mouse is simply a special case.

The windowserver listens for IPC commands and
sometimes sends results back. For example, receiving

the buffer for a window requires the client to send

an IPC WINDOW_GETBUFFER request with the
windowid. Then the client must call ipc_recv to
receive each page in the buffer until it receives the
value o. (Each buffer is large enough to fill the whole
screen, meaning it is 118 pages). A misbehaving client
could simply not receive the buffer pages and lockup
the windowserver. To fix this I could add a timeout

on the attempt to send.

The window server is usually blocked in the
ipc_recv function, so it cannot poll
sys_get_event. A simple user mode program does
the polling instead, and sends the mouse event to

the window server.

#include <inc/lib.h>
#include <inc/windowserver.h>

union Windowipc windowipcbuf attribute ((aligned(PGSIZE)));

void umain(int argc, char **argv) {
struct InputEvent evt;
envid t windowenv = ipc_find env(ENV_TYPE GUI);
while (1) {
if (sys_get event(&evt) > 0) {
windowipcbuf.mouse = evt;
ipc_send(windowenv, WINDOW MOUSE, &windowipcbuf, PTE P | PTE U | PTE W
}

The winpow_SETBG command allows you to set the
background image by passing a file name in the

Windowipc bufter. This is slightly complicated by

the fact that the file I0 commands use IPC. The
responses from the fs server can get mixed up with

window commands from other processes. This

means that the server must fork and perform the 10
in a different environment which is not receiving
commands. The forked process can redraw the
window buffer, because the buffers are allocated
with PTE_SHARE set, and once it finishes reading it
can ask the server to redraw the whole desktop

background window.

X - O QEMU

7/ 2 by mountain.bn

3
y_inage pillars.bmp

