Section 7/

Data races, thread pools, project 2b




Proj

Mic

Administrivia

ect O will be graded by Friday

terms will be handed back Friday in

class.

We

will start to grade Project 1 next week.

Project 2b due Sunday March 2" at
11:59pm.




Debugging threaded programs

printf is useful, but it takes time to execute—why is
this potentially a problem when writing
multithreaded programs?

GDB is pthreads-aware and supports inspecting the
state of running threads

* See this site for a tutorial on interacting with threads
from GDB

If your program is crashing and you don’t know why,
use ulimit -c unlimited to have all crashing
programs produce core dumps

* Then load the core in GDB with gdb binary core-file




Data races

A data race is when two threads read/write
the same data concurrently

* The C standard does not make guarantees about
the state of data if there are concurrent reads/
writes of it

Solution: protect concurrent accesses to
data using a mutex




Detecting data races

Valgrind has a tool called helgrind for detecting
data races

% Usage: valgrind --tool=helgrind ./binary
* See the helgrind manual for more information

Beyond data races, helgrind and other tools will
check for problems such as:

* Exiting a thread that holds a mutex
* Acquiring locks in inconsistent orderings

* Waiting on a condition variable without having
acquired the corresponding mutex

* ...and many others




Thread pools

Thread pools provide the illusion of an
unlimited amount of parallel processing power,
despite using a small number of threads

Task Queue

- @O — O ]

Tt [OlO][O]=][O][O]

Completed Tasks |
~([(@@@@@@@© «— 0O

11/7/13 *Diagram from \Wikipedia




Thread pools

Whenever there is a new task to run, a
thread from the pool processes it and then

fetches the next task from the queue
Task Queue

- @O — O ]

Tt [OlO][O]=][O][O]

Completed Tasks |
~([(@@@@@@@© «— 0O

11/7/13 *Diagram from \Wikipedia




Thread pool implications

Thread pools only simulate an infinite
number of processing threads

* Deadlocks can occur if running threads are
blocked waiting for a task that hasn’t started

* For example: launching both producers and
consumers from a shared thread pool (why?)

Thread pools save on the cost of spinning up
new threads—workers are recycled




sioux thread pool

typedef struct {

queue redquest queue;

sthread cond t request ready;
} threcacNecels

typedef struct ({
1Nt nesuemeenhne
} request;

// New request arrives:

ey enqueue request, signal request ready
// Worker threads:

// dequeue, run handle request (request) ;




sioux thread pool problems

This sounds good, but what happens if the

request queue grows faster than threads
can process the requests?

* Hint: it’s okay to have incoming connections
wait (and potentially time out) before you
accept () them if your server is overloaded

* The OS enforces a limit on the number of
unhandled incoming connections for you—the

BACKLOG macro in sioux_run.c determines how
many




Thread pool performance

Threads can run on separate CPU cores, but
thread pool state is centralized

Taking a work item involves locking a shared
mutex, creating a central point of contention

* If work items are quick to process, the cost of

acquiring the mutex can outweigh the cost of
processing the work item!

If we know approximately how long work items
take, how can we improve performance?




Thread pool performance

Partitioning: divide work items among
threads as they arrive

* Can use a fixed scheme (simple but potentially
unbalanced) or a dynamic scheme (more
complex but better balanced) to distribute items

Work stealing: threads that finish processing
items in their queues steal work from other

threads’ queues

* Work stealing comes up in all manner of
distributed settings




Project 2b: part 4

Make the sioux web server multithreaded

Create a thread pool (preferrably in a separate
thread _pool.[c]|h])

Use the existing connection handling code in
cooperation with your thread pool

Test using pthreads—we won’t test against your
sthreads implementation

Apache Bench (ab) is a useful tool for measuring
webserver performance, more so than the provided
webclient tool




Project 2b: part 5

Add preemption to the sthreads library

One way to think about preemption safety:
* Disable interrupts in “library” context

* Use atomic locking in “application” context

Does locking and unlocking a mutex occur in
“library” context or “application” context?




How not to implement mutexes

sthread user mutex lock (mutex)
splx (HIGH); // disable interrupts
1f (mutex—->held) {
enqueue (mutex->queue, current thread);
s chedulie Sne=c=isliia=t=ls N g
} else {
mutex—->held = true;

}
splx (LOW); // reenable interrupts

What's the problem here?




How not to implement mutexes

sthread user mutex lock (mutex) {
while (
a toma ciiscisia el el
gmutex—->availlable)) { }

What’s the problem here?




How not to implement mutexes

sthread user mutex lock (mutex) {
while (
a toma ciiscisia el el
cgmutex—->available)) {
engueue (miEc=sr eIV VN eEvigac it thiread) ;
schedule next thread();

What's the problem here? Hint: think about
preemption




How to implement mutexes

* Need to lock around the critical sections in
the mutex functions themselves!

*kYour struct sthread mutex will likely need
another member for this

* For hints, re-read lecture slides:
* Module 7: Synchronization (slide 21 forward)
* Module 8: Semaphores

Similar hints apply for condition variables




Project 2b: part 6

Writeup about webserver and thread library

Be thorough! Make use of graphs for
comparisons and provide commentary on
why the results are the way they are

As mentioned previously, the Apache Bench
(ab) tool might be useful here as well




