Section 5

Midterm review




Kernel/userspace separation

Userspace processes cannot interact directly with
hardware (non-privileged mode)

Attempting to execute a system call instruction
causes a trap to the kernel (privileged mode), which
handles the request

Why is it necessary to have both privileged and non-
privileged mode?

How is privileged mode enforced, and how do virtual
machine monitors work inside this model?




|O from userspace

Userspace processes interact with disks and
other devices via open (), read (), write (),
and other system calls

Multiple levels of abstraction: kernel
presents file system to userspace, and
device drivers present a (mostly) unified
interface to kernel code

* What are the benefits and drawbacks of
designing a system in this way?




Monolithic and microkernels

Monolithic kernels encapsulate all aspects of
functionality aside from hardware and user
programs

* Pro: Low communication cost, since everything is in
the kernel’s address space

* Cons: Millions of lines of code, continually
expanding, no isolation between modules, security

Microkernels separate functionality into
separate modules that each expose an API
* Services as servers

* Why? How?




Processes versus threads

Processes have multiple pieces of state
associated with them

* Program counter, registers, virtual memory, open
file handles, mutexes, registered signal handlers, the
text and data segment of the program, and so on

* Total isolation, mediated by the kernel

Threads are “lightweight” versions of processes

* Which pieces of state listed above do threads not
maintain individually?




Process creation

fork () : create and initialize a new process control block

Copy resources of current process but assign a new address
space

Calls to fork () return twice—once to parent (with pid of
child process) and once to child

What makes this system call fast even for large processes?
viork () versus copy-on-write

exec () : stop the current process and begin execution of
a hew one

* Existing process image is overwritten
* No new process is created

* |s there a reason why fork () and exec () are separate
system calls?




Threads

How is a kernel thread different from a userspace
thread?

* Kernel thread: managed by OS, can run on a different
CPU core than parent process

* Userspace thread: managed by process/thread library,
provides concurrency but no parallelism (can’t have two
userspace threads within a process executing
instructions at the same time)

CPU sharing

* Threads share CPU either implicitly (via preemption) or
explicitly via calls to yield ()

* What happens when a userspace thread blocks on 10?




Synchronization

Critical sections are sequences of instructions that
may produce incorrect behavior if two threads
interleave or execute them at the same time

* E.g. the banking example that everyone loves to use

Mutexes are constructs that enforce mutual exclusion

* mutex.lock () /acquire (): wait until no other thread
holds the lock and then acquire it

* mutex.unlock () /release (): release the Locken!

* Mutexes rely on hardware support such as an atomic test-

and-set instruction or being able to disable interrupts
(why?)




Synchronization constructs

Spinlocks are mutexes where 10ck () spinsin a
loop until the lock can be acquired

* High CPU overhead, but no expensive context
switches are necessary

* In what type of scenario are spinlocks useful?

Semaphores are counters that support atomic
increments and decrements

* P (sem): block until semaphore count is positive,
then decrement and continue

* V (sem):increment semaphore count
* How are semaphores different from spinlocks?




Synchronization constructs

Condition variables associated with mutexes allow
threads to wait for events and to signal when they
have occurred

¥ cv.wait (mutex* m):release mutex m and block until the

condition variable cv is signaled. m will be held when
wait () returns

* cv.signal (): unblock one of the waiting threads. m must
be held during the call but released sometime afterward

* Why is it necessary to associate a mutex with a condition
variable?

* What happens if signal () is invoked before a call to
wait ()?




Monitors

Monitors are souped-up condition variables that support
enter (), exit (), wait (), signal () ,broadcast () routines

When one thread enters a monitor, no other thread can
enter until the first thread exits

The exception is that a thread can wait on a condition

after entering a monitor, permitting another thread to

enter (which will potentially signal and unblock the first

thread)

* Hoare monitors: signal () causes a waiting thread to run
immediately

* Mesa monitors: signal () returns to the caller and a waiting
thread will unblock some time later




Deadlock

Is this deadlock? How do we fix it?
Thread 1: Thread 2: Thread 3:
ock(A) ock(B) ock(C)

ock(B) ock(C) ock(A)
Do_thing1() Do_thing2() Do_thing3()
unlock(B) unlock(C) unlock(A)
unlock(A) unlock(B) unlock(C)




Deadlock

What is an example of deadlock?

Methods for preventing and avoiding deadlock
* Have threads block until all required locks are available
* Have all threads acquire locks in the same global ordering

* Run banker’s algorithm to simulate what would happen if this
thread and others made maximum requests: no deadlock =
continue, deadlock = block and check again later

Can resolve deadlock by breaking cycles in the
dependency graph: choose a thread, kill it, and release
its locks

* What are the potential problems related to doing this?




