Section 1

Intro, C programming, project O

Slides adapted by slides created by jasnyder

Far-reaching implications

Concepts and techniques learned in lecture /

through projects apply to all other areas of

computer science

* Data structures

* Caching

* Concurrency

* Virtualization

OSes support all other areas of computer

science

Course tools

Assn 0: Any computer with C development

tools (002, attu, your *nix box)

Assn 1: Use the course VM inside an

emdu

com

ator (VMware, Qemu etc.) on your

outer or a lab computer

Can compile on forkbomb.cs.washington.edu
\ENE

Course tools

We’'ll be using the GNU C Compiler (gcc) for
compiling C code in this course, which is
available on every platform except Windows
(Cygwin lovers proceed at your own risk)
For an editor, use whatever you are most
comfortable with; emacs, vim, gedit, and
Eclipse are good choices (ed and butterflies
also options)

Discussion board

The discussion board is an invaluable tool;
use it!

Andrew (my TA partner in crime) and | both
receive email alerts whenever there is a new
post. Response time should be by the end of
the day, typically faster than that.

For anything non-personal use the discussion
board.

Collaboration

If you talk or collaborate with anybody, or access any
websites for help, in your project
submission

See the course policy for more restrictions

Okay: discussing problems and techniques to solve
them with other students

Not okay: looking at/copying other students’ code.
Googling solutions. Using code from Wikipedia.

We will pass your code through plagiarism detection
software (MOSS, Deckard, etc.)

C programming

Most modern operating systems are still
written in C

Why not Java?

* Interpreted Java code runs in a virtual machine, so
what language is the VM built in?

Cis precise in terms of
* Instructions (semantics are clear)

* Timing (can usually estimate number of cycles
needed to execute code)

* Memory (allocations/de-allocations are explicit)

C language features

Pointers

Pass-by-value vs. pass-by-reference
Structs

Typedefs (aliasing)

Malloc/free

Pointers

int 1X
e Y

int* piX = &iX; // declare a pointer to iX
// with value as the
// address of iX

eI — LY ¢ // change value of iX to 1Y
// (iX == 6)

P =i // change piX to point to
// 1Y’"s memory location

// For more review, see the CSE 333 lecture

// and section slides

Function pointers

int functionate (int i1Herp, char cDerp) {
// declare and define a function
int (*pfEoo) (iinis) SuElcna et Wy
// declare a pointer to a function
// that takes an int and a char as
// arguments and returns an int
pfFoo = functionate;
// assign pointer to functionate()’s
// location in memory
iX = pfEoolcunE
// set iX to the wvalue returned by
// functionate (7, 'p')

Case study: signal()

extern void (*signal (int, void(*) (int))) (1nt);
What is going on here?

signal () is “a function that takes two
arguments, an integer and a pointer to a
function that takes an integer as an argument
and returns nothing, and it (signal ()) returns a
pointer to a function that takes an integer as an
argument and returns nothing.” (from
StackOverflow)

Case study: signal

We can make this a lot clearer using a
typedef:

// Declare a signal handler prototype
typedef void (*SigHandler) (1nt 1Signum) ;
// signal could then be declared as

extern SigHandler signal (
int 1Signum, SigHandler pfHandler);

Arrays and pointer arithmetic

Array variables can often be treated like
pointers, and vice-versa:

int aiFoo[2]; // foo acts like a pointer to
// the beginning of the array

* (aiFoo + 1) = 5;// the second int in the
// array 1is set to 5

Don’t use pointer arithmetic unless you
have a good reason to do so

Passing by value vs. reference

int doSomething(int 1Foo) {
return iFoo + 1;

}

vold doSomethingElse (int* piFoo) {
*plEcee il
}

vold example (void) {
aBoea ¢ — 5 ¢
int 1Y = doSomething(iX); // iX==5, iY==
doSomethingElse (&1iX) ;

Returning addl. information

int 1nitialize(int 1Argl, int 1Arg2,
int* piErrorCode) {
// If initialization fails, set an error
// code and return false to indicate
// failure.
1L e
*plErrorC ol
return EXIT FAILURE;
}
// ... Do seicHeuilcrashksn Bike bions wor k
return EXIT SUCCESS;

Structs

// Define a struct referred to as
// "struct s2DPoint"
struct s2DPoint {
int 1X;
alee ALY [
}; // Don’t forget the trailing ‘;’'!

// Declare as ciEriie e =t leils
struct s2DPoint foo;

// Set the two fields of the struct
WO o L —
RO s il —

Typedefs

typedef struct s2DPoint 2DPoint;
// Creates an alias “2DPoint” for
// Y“struct s2DPoint”

2DPoint* poBar =
(2DPoint*) malloc (
sizeof (2DPoint)) ;
// Allocates space for a 2DPoint struct
// on the heap; poBar points to it

poBar->iX = 2;
// “->" operator dereferences the
// pointer and accesses the field iX;
// equivalent to (*poBar).iX = 2;

Memory management

Allocate memory on the heap:

welek izl loe (B Ze © S1Ze]l ¢
* Note: malloc may fail!
But not necessarily when you would expect...

* Use sizeof () operator to get the size of a type/
struct

Free memory on the heap:

vold free(void* ptr);

* Pointer argument comes from previous
malloc () call

Common C pittalls (1)

What’s wrong and how can it be fixed?

char* city name (float fLat, float fLong) {
char sName[100];

return sName;

}

Common C pittalls (1)

Problem: returning pointer to local (stack)
memory (also: using floats)

Solution: allocate on heap

char* cuty nameideoulclicibniictalceilclestl.ong) {
// Preferably allocate a string of
// just thel rikglitas=ae
char* sName =
(char*) malloc (100*s1izeof (char));

return sName;

}

Common C pitfalls (2)

What’s wrong and how can it be fixed?

char* sBuf = (char*) malloc (32*sizeof (char));
strcpy (sBuf, argv(l]);

Common C pitfalls (2)

Problem: potential buffer overflow

Solution:

static consk sstni=EiVERENEEE RN/

char* sBuf = (char*) malloc (BUFFER SIZE) ;

strncpy (sBuf, argv[l], BUFFER SIZE) ;

Why are buffer overflow bugs dangerous?

Common C pittalls (3)

What’s wrong and how can it be fixed?

char* sBuf = (char*) malloc (BUFFER SIZE) ;
Strncpy (sBuf, sHello, BUFFER SIZE) ;
printf (% st R

sBuf = (char*jnm-ANtcieReA=tlaGIESE NNk -
strncpy (sBuf,scneiiciNiepsesBIUREERNSTZE) ;

printf ("ss\n", SBUME

free (sBuf) ;

Common C pittalls (3)

Problem: memory leak

Solution:

char* sBuf = aichiaiasii=ssscieR =NIRRERSIETF,) ;
strncpy(sBuf, sHello, BUFFER SIZE) ;
printf ("$s\n", sBuf);

free (sBuf) ;

buf = (char®) mcHSRCIEEE NI,

Common C pittalls (4)

What’s wrong (besides ugliness) and how
can it be fixed?

char sFoo[2

sFoo[1l]

17
sFoo L0 =auuiE
o
jeBe il i (" i

Common C pittalls (4)

Problem: string is not NULL-terminated

Solution:
char sFoo[3];
'H';
'i';
'"\O';
s\n", sFoo):;

Easier way: char* sFoo = "Hi”;

Common C pitfalls (5)

Another bug in the previous examples?

Not checking the return value of system calls /
library calls!

char* sBuf = (char*) malloc (BUFFER SIZE) ;
if (sBuf == 0) {

fprintf (stderr, "error!\n");

return EXIEEESREEIEEE

}
strncpy (sBuf, argv[l], BUFEFER SIZE) ;

Project O

Description is on course web page
Due Friday January 17th, 11:59pm

Work individually

* Remaining projects are in groups of 2. When you
have found a partner, one of you should fill out
the survey on Catalyst (forthcoming by email)

Project 0 goals

Get re-acquainted with C programming

Practice working in C / Linux development
environment

Create data structures for use in later
projects

Valgrind

Helps find all sorts of memory problems

* Lost pointers (memory leaks), invalid references,
double frees

Simple to run:
* valgrind ./myprogram

* Look for “definitely lost,” “indirectly lost” and
“possibly lost” in the LEAK SUMMARY

Manual:
% http://valgrind.org/docs/manual/manual.html

Project 0 memory leaks

Before you can check the queue for memory leaks, you

should probably add a queue destroy function:
vold queue destroy (queue* g) {
queue_liﬁk* cur;
queue link* next;
R o= NOLL) |
cur = g->head;
while (cur) {
next = cur—->next;
free (cur) ;
cur = next;
}
free(q);
}
}

Project 0 testing

The test files in the skeleton code are
incomplete

* Make sure to test every function in the interface
(the .h file)

* Make sure to test corner cases

Suggestion: write your test cases first

Project 0 tips

Part 1: queue
* First step: improve the test file
* Then, use valgrind and gdb to find the bugs

Part 2: hash table
* Write a thorough test file
* Perform memory management carefully

You'll lose points for:
* Leaking memory
* Not following submission instructions

Use the discussion board for questions about the code

