Main Points

e Kernel control transfer

— Interrupt: how do we resume execution after an
interrupt as if the interrupt hadn’t happened?

— System call: how do we execute a procedure called

from an application, but implemented in the
kernel?

— Upcall: how do we deliver an event to user level?

e Concurrency introduction
— More in section and on Friday



Interrupt Mechanics

Processor saves dny user level state
— MIPS: special registers to hold user PC, SP
— x86: hardware puts these on kernel stack

Processor jumps to first instruction in handler
Handler saves remaining registers

— Any registers it will clobber (depends on compiler)
— Floating point if necessary (not in 0S/161)

Handler runs on kernel stack, with interrupts
disabled, must be short






