The Kernel Abstraction



Source
Code

The Problem

Compiler

Executable
Image:
Instructions
and Data

Operating

System Copy

Physical
Memory

Machine
Instructions

Data

Heap

Stack

Machine
Instructions

Data

Heap

Stack

Process

Operating
System
Kernel



Challenge: Protection

e How do we execute code with restricted
privileges?

— Either because the code is buggy or if it might be
malicious

 Some examples:
— A script running in a web browser
— A program you just downloaded off the Internet

— A program you just wrote that you haven’t tested
yet



Main Points

* Process concept

— A process is the OS abstraction for executing a
program with limited privileges

* Dual-mode operation: user vs. kernel

— Kernel-mode: execute with complete privileges

— User-mode: execute with fewer privileges

e Safe control transfer
— How do we switch from one mode to the other?



Process Abstraction

* Process: an instance of a program, running
with limited rights

— Thread: a sequence of instructions within a
process

e Potentially many threads per process (for now 1:1)
— Address space: set of rights of a process

* Memory that the process can access

e Other permissions the process has (e.g., which system
calls it can make, what files it can access)



Thought Experiment

* How can we implement execution with limited
privilege?
— Execute each program instruction in a simulator
— If the instruction is permitted, do the instruction
— Otherwise, stop the process
— Basic model in Javascript, ...

* How do we go faster?
— Run the unprivileged code directly on the CPU?



Hardware Support:
Dual-Mode Operation

Kernel mode
— Execution with the full privileges of the hardware

— Read/write to any memory, access any |/O device,
read/write any disk sector, send/read any packet

User mode

— Limited privileges

— Only those granted by the operating system kernel
On the x86, mode stored in EFLAGS register

On the MIPS, mode in the status register



A Model of a CPU
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A CPU with Dual-Mode Operation
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Hardware Support:
Dual-Mode Operation

Privileged instructions
— Available to kernel
— Not available to user code

Limits on memory accesses
— To prevent user code from overwriting the kernel

Timer
— To regain control from a user program in a loop

Safe way to switch from user mode to kernel
mode, and vice versa



Privileged instructions

* Examples?

 What should happen if a user program
attempts to execute a privileged instruction?



Question

* For a “Hello world” program, the kernel must
copy the string from the user program
memory into the screen memory.

 Why not allow the application to write directly
to the screen’s buffer memory?



Simple Memory Protection

Processor’s View Implementation Physical
Memory
Virtual Base 8
. ase
Virtual ~_Memory Virtual Physical
Address Address v Address
Processor ......... : Processor ............ prasensns e )@ ........................................ >
Ceeeeeees > .
Base+
: Bo?nd Bound
: Raise
"eessssssssssscccnnnns P >)eeeeeees >
@ Exception




Towards Virtual Addresses

* Problems with base and bounds?



Virtual Addresses
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Example

int staticVar=0; // a static variable
main() {
int localVar =0; // a procedure local variable

staticVar += 1; localVar +=1;

sleep(10); // sleep causes the program to wait for x seconds
printf ("static address: %x, value: %d\n", &staticVar, staticVar);
printf ("procedure local address: %x, value: %d\n", &localVar, localVar);

}

What happens if we run two instances of this program at the same time?



Question

e Suppose we had a perfect object-oriented
language and compiler, so that only an
object’s methods could access the internal
data inside an object. If the operating system
only ran programs written in that language,
would it still need hardware memory address
protection?



Hardware Timer

 Hardware device that periodically interrupts
the processor

— Returns control to the kernel handler

— Interrupt frequency set by the kernel
* Not by user code!

— Interrupts can be temporarily deferred
* Not by user code!

* Interrupt deferral crucial for implementing mutual
exclusion



Mode Switch

* From user mode to kernel mode

— Interrupts
* Triggered by timer and I/O devices

— Exceptions
* Triggered by unexpected program behavior
* Or malicious behavior!

— System calls (aka protected procedure call)

* Request by program for kernel to do some operation on
its behalf

* Only limited # of very carefully coded entry points



Question

* Examples of exceptions

* Examples of system calls



Mode Switch

* From kernel mode to user mode
— New process/new thread start
e Jump to first instruction in program/thread
— Return from interrupt, exception, system call
* Resume suspended execution
— Process/thread context switch

* Resume some other process

— User-level upcall (UNIX signal)

» Asynchronous notification to user program



How do we take interrupts safely?

* |nterrupt vector
— Limited number of entry points into kernel

e Atomic transfer of control

— Single instruction to change:
* Program counter
» Stack pointer
* Memory protection
e Kernel/user mode

* Transparent restartable execution

— User program does not know interrupt occurred



Interrupt Vector

* Table set up by OS kernel; pointers to code to
run on different events
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Interrupt Stack

* Per-processor, located in kernel (not user)
memory
— Usually a process/thread has both: kernel and
user stack
 Why can’t interrupt handler run on the stack
of the interrupted user process?



Interrupt Stack
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Interrupt Masking

* Interrupt handler runs with interrupts off
— Re-enabled when interrupt completes

* OS kernel can also turn interrupts off

— Eg., when determining the next process/thread to run
— On x86

e CLI: disable interrrupts
e STI: enable interrupts
* Only applies to the current CPU (on a multicore)

* Cf.implementing synchronization, chapter 5



Interrupt Handlers

* Non-blocking, run to completion

— Minimum necessary to allow device to take next
interrupt

— Any waiting must be limited duration
— Wake up other threads to do any real work

* Linux: semaphore

e Rest of device driver runs as a kernel thread



Atomic Mode Transfer

* On interrupt (x86)
— Save current stack pointer

— Save current program counter

— Save current processor status word (condition
codes)

— Switch to kernel stack; put SP, PC, PSW on stack
— Switch to kernel mode

— Vector through interrupt table

— Interrupt handler saves registers it might clobber
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User-level Process
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User-level Process
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At end of handler

* Handler restores saved registers

e Atomically return to interrupted process/
thread
— Restore program counter
— Restore program stack
— Restore processor status word/condition codes
— Switch to user mode



System Calls

User Program Kernel
main () { syscall(arg1, arg2) {
syscall(arg1, arg2); // do operation
} }
(1) : (6) (3) (4)
User Stub (2) Kernel Stub
Hardware Trap
Sysca” (arg’|’ argZ) { .............................................. > hand|er() {
trap oo, /I copy arguments
return Trap Ret /[ from user memory
} rap netum //check arguments

(5) syscall(arg1, arg2);
I/ copy return value
// into user memory
return;



Kernel System Call Handler

Locate arguments
— In registers or on user(!) stack

Copy arguments
— From user memory into kernel memory
— Protect kernel from malicious code evading checks

Validate arguments
— Protect kernel from errors in user code

Copy results back
— Into user memory



Web Server Example
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Virtual Machine
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User-Level Virtual Machine

* How does VM Player work?
— Runs as a user-level application

— How does it catch privileged instructions, interrupts,
device 1/0O, ...

* |nstalls kernel driver, transparent to host kernel
— Requires administrator privileges!
— Modifies interrupt table to redirect to kernel VM code
— If interrupt is for VM, upcall

— If interrupt is for another process, reinstalls interrupt
table and resumes kernel



Upcall: User-level interrupt

* AKA UNIX signal

— Notify user process of event that needs to be handled
right away
e Time-slice for user-level thread manager
* Interrupt delivery for VM player

* Direct analogue of kernel interrupts
— Signal handlers — fixed entry points
— Separate signal stack
— Automatic save/restore registers — transparent resume
— Signal masking: signals disabled while in signal handler



Upcall: Before
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Upcall: After

Program Counter -

Stack POInteI’ .............. :
Stack

~-> signal_handler() {

Saved
Registers

SP

PC




