Operating Systems:
Principles and Practice

How This Course Fits in the UW CSE
Curriculum

* CSE 333: Systems Programming
— Project experience in C/C++
— How to use the operating system interface

* CSE 451: Operating Systems

— How to make a single computer work reliably
— How an operating system works internally

e CSE 452: Distributed Systems (winter 2014)

— How to make a set of computers work reliably,
despite failures of some nodes

Project: 0S/161

Build an operating system
— That can boot on a multiprocessor

We give you some basic building blocks

— Three assignments, that build on each other
* Threads, user programs, virtual memory

— Work in groups of 2-3
Instructions on web page later today

— Download and browse code before Wednesday

— Bring laptop/smartphone (if avail) on Wednesday/
Thursday

Assighnment O due next Wednesday

Problem Sets

* Two assignments spread over quarter
— Practice for exams

— Done individually

Main Points (for today)

* Operating system definition
— Software to manage a computer’s resources for its
users and applications

* OS challenges

— Reliability, security, responsiveness, portability, ...

e OS history

— How are OS X, Windows 8, and Linux related?

What is an o

User-mode

operating system?

System System System
e Software to Livrary ibrry Library
Kernel-user Interface
m a n a ge a Kernel-mode (Abstract virtual machine

)
COmputer'S [Virtual Memory]
resources for its [TCWW)]
etworking Scheduling
users and

Hardware Abstraction Layer

a p p I i Ca ti O n S [Hardware-Specific Software]

and Device Drivers

Hardware — Processors [Address Translation]
Disk /
Graphics Processor]
N

Operating System Roles

* Referee:
— Resource allocation among users, applications
— |solation of different users, applications from each other
— Communication between users, applications

* [llusionist

— Each application appears to have the entire machine to
itself

— Infinite number of processors, (near) infinite amount of
memory, reliable storage, reliable network transport

e Glue
— Libraries, user interface widgets, ...

Question

 What do you need from hardware to be able
to:
— |solate different applications from each other?

— Isolate different users from accessing each others
files?

Question

* How should an operating system allocate
processing time between competing uses?
— Give the CPU to the first to arrive?

— To the one that needs the least resources to
complete? To the one that needs the most
resources?

— What if you need to allocate memory?
— Disk?

Example: web service

(2)
(1) Read
GET index.htm| >
Client Server index.html
(4) R
Data (3)
Data

* How does the server manage many simultaneous
client requests?

* How do we keep the client safe from spyware
embedded in scripts on a web site?

* How do make updates to the web site so that clients
always see a consistent view?

OS Challenges

Reliability

— Does the system do what it was designed to do?
Availability

— What portion of the time is the system working?

— Mean Time To Failure (MTTF), Mean Time to Repair

Security
— Can the system be compromised by an attacker?

Privacy
— Data is accessible only to authorized users

(0]

OS Challenges ™=

User-mode

ApPP App APP

¢ PO rta b | | |ty System System System

Library Library Library

— . Kernel-user Interface
FO r p rog ra m S . (Abstract virtual machine)

Kernel-mode

e Application programming [Virtual Memory]
interface (API)
]

* Abstract virtual machine
(AVM) —— Hardware Abstraction Layer

Hardware-Specific Software
and Device Drivers

Processors [Address Translation]
Graphics Processor]

TCP/IP Networking

— For the operating system

e Hardware abstraction
layer

Hardware

Disk

OS Challenges

e Performance

— Latency/response time
* How long does an operation take to complete?
— Throughput
* How many operations can be done per unit of time?
— Overhead
 How much extra work is done by the OS?
— Fairness
* How equal is the performance received by different users?

— Predictability
* How consistent is the performance over time?

OS History

MVS |\/|u|f[iCS Leve
MS/DOS VMS VM/370 UNIX Leve
Windows . BSD UNIX Mach Leve

. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
.

o

Windows NT VMWare Linux NEXT/I\/IacOS Leve
Windows 8 MacOS X Leve

............. |nﬂuence l l
Descendant Android iOS Leve

Computer Performance Over Time

1981 1997 2014 (2'::1";;’:98)
Uniprocessor speed (MIPS) 1 200 2500 2.5K
CPUs per computer 1 1 10+ 10+
Processor MIPS/$ $100K $25 $0.20 500K
DRAM Capacity (MiB)/$ 0.002 2 1K 500K
Disk Capacity (GiB)/$ 0.003 7 25K 10M
Home Internet 300bps 256 Kbps 20 Mbps 100K
Machine room network (shared) (switched) (swiched) °°
Ratio of users 100:1 1:1 1:several 100+

to computers

Early Operating Systemes:
Computers Very Expensive

* One application at a time
— Had complete control of hardware
— OS was runtime library
— Users would stand in line to use the computer

e Batch systems
— Keep CPU busy by having a queue of jobs

— OS would load next job while current one runs
— Users would submit jobs, and wait, and wait, and

Time-Sharing Operating Systems:
Computers and People Expensive

* Multiple users on computer at same time

— Multiprogramming: run multiple programs at
same time

— Interactive performance: try to complete
everyone’s tasks quickly

— As computers became cheaper, more important to
optimize for user time, not computer time

Today’s Operating Systems:
Computers Cheap

Smartphones
Embedded systems
Web servers
Laptops

Tablets

Virtual machines

Tomorrow’s Operating Systems

Giant-scale data centers

Increasing numbers of processors per
computer

Increasing numbers of computers per user
Very large scale storage

Textbook

* Lazowska, Spring 2012: “The text is quite
sophisticated. You won't get it all on the first
pass. The right approach is to [read each
chapter before class and] re-read each chapter
once we've covered the corresponding
material... more of it will make sense then.
Don't save this re-reading until right before
the mid-term or final — keep up.”

