File Systems

Main Points

* File layout
* Directory layout

File System Design Constraints

* For small files:
— Small blocks for storage efficiency
— Files used together should be stored together

* For large files:
— Contiguous allocation for sequential access
— Efficient lookup for random access

 May not know at file creation
— Whether file will become small or large

File System Design

 Data structures
— Directories: file name -> file metadata

e Store directories as files

— File metadata: how to find file data blocks
— Free map: list of free disk blocks

* How do we organize these data structures?

— Device has non-uniform performance

Design Challenges

Index structure
— How do we locate the blocks of a file?

Index granularity
— What block size do we use?

Free space
— How do we find unused blocks on disk?

Locality
— How do we preserve spatial locality?
Reliability

— What if machine crashes in middle of a file system op?

File System Design Options

FAT FFS NTFS
Index Linked list Tree Tree
structure (fixed, assym) (dynamic)
granularity block block extent
free space FAT array Bitmap Bitmap
allocation (fixed (file)
location)
Locality | defragmentation| Block groups Extents
+ reserve Best fit
space defrag

Named Data in a File System

index

file name directog file number StrUCtUE storage
offset offset block

Microsoft File Allocation Table (FAT)

* Linked list index structure

— Simple, easy to implement

— Still widely used (e.g., thumb drives)
* File table:

— Linear map of all blocks on disk
— Each file a linked list of blocks

ocvooNOTLThWN—_OOLONOIAWN—O

[N I I R R e e e e e

FAT

MFT Data Blocks
< file 9 block 3
— file 9 block 0
—5 file 9 block 1
file 9 block 2

file 12 block 0

- file 12 block 1
N file 9 block 4

FAT

* Pros:
— Easy to find free block
— Easy to append to a file
— Easy to delete a file

* Cons:
— Small file access is slow
— Random access is very slow

— Fragmentation
 File blocks for a given file may be scattered
* Files in the same directory may be scattered
* Problem becomes worse as disk fills

Berkeley UNIX FFS (Fast File System)

* inode table
— Analogous to FAT table

* inode
— Metadata

* File owner, access permissions, access times, ...
— Set of 12 data pointers
— With 4KB blocks => max size of 48KB files

FFS inode

Metadata
— File owner, access permissions, access times, ...

Set of 12 data pointers
— With 4KB blocks => max size of 48KB files

Indirect block pointer
— pointer to disk block of data pointers

Indirect block: 1K data blocks => 4MB (+48KB)

FFS inode

Metadata

— File owner, access permissions, access times, ...

Set of 12 data pointers
— With 4KB blocks => max size of 48KB

Indirect block pointer

— pointer to disk block of data pointers

— 4KB block size => 1K data blocks => 4MB
Doubly indirect block pointer

— Doubly indirect block => 1K indirect blocks
— 4GB (+ 4MB + 48KB)

FFS inode

Metadata
— File owner, access permissions, access times, ...

Set of 12 data pointers
— With 4KB blocks => max size of 48KB

Indirect block pointer
— pointer to disk block of data pointers
— 4KB block size => 1K data blocks => 4MB

Doubly indirect block pointer
— Doubly indirect block => 1K indirect blocks
— 4GB (+ 4MB + 48KB)
Triply indirect block pointer
— Triply indirect block => 1K doubly indirect blocks
— 4TB (+ 4GB + 4MB + 48KB)

Inode Array Triple Double
Indirect Indirect Indirect Data

/Inode Blocks Blocks Blocks Blocks

File”

Metadata /
\

Direct
Pointers

A4

Indirect i’o'mter
Dbl. Indirect Ptr.
Tripl. Indrect Ptr.

/.

>

>
>
>
>
>

FFS Asymmetric Tree

* Small files: shallow tree
— Efficient storage for small files

e Large files: deep tree
— Efficient lookup for random access in large files

FFS Locality

* Block group allocation
— Block group is a set of nearby cylinders
— Files in same directory located in same group
— Subdirectories located in different block groups

* inode table spread throughout disk

— inodes, bitmap near file blocks

* First fit allocation
— Small files fragmented, large files contiguous

Block Group 0

Block Group 1

Block Group 2

FFS First Fit Block Allocation

In-Use Free
Start of BIOCK BJ})Ck
Block EIEEEEE O SRl [Bl B [[[T[] e

Group

FFS First Fit Block Allocation

Start of Write Two Block File

Block DI [[O DO [[[[T TTTTT]eee
Group

FFS First Fit Block Allocation

Start of Write Large File

BIock|||||||||||||||¥:|Z\l:W:Dm

Group

FFS

* Pros
— Efficient storage for both small and large files
— Locality for both small and large files
— Locality for metadata and data

e Cons

— Inefficient for tiny files (a 1 byte file requires both an
inode and a data block)

— Inefficient encoding when file is mostly contiguous on
disk (no equivalent to superpages)

— Need to reserve 10-20% of free space to prevent
fragmentation

NTFS

* Master File Table
— Flexible 1KB storage for metadata and data

* Extents
— Block pointers cover runs of blocks
— Similar approach in linux (ext4)
— File create can provide hint as to size of file

* Journalling for reliability
— Discussed next time

Master File Table

NTFS Small File

- MFT Record (small file)

Std. Info.

File Name

Data (resident)

(free)

NTFS Medium File

Master File Table

Start R
Length
,\: %
b
o
I
()]
MFT Record Start + Lengthl__,
Std. Info. | File Name Data (nonresident) (free)
Start R
Length A
NL =
(D}
=
[go]
I
()]

Start + Length

NTFS Indirect Block

Master File Table

MFT Record
(part 1) o
-7 name
Std. Info. Attr. List name File Name | File Name | (free)
1\
MFT Record
(part 2) |
Std. Info. Data (nonresident) (free)
| |

Data Extent

Data Extent

\ 4

Data Extent

\4

NTFS Multiple Indirect Blocks

MFT Record

— (big/fragmented file)
. Std Info. | AurList Data (nonresident)
.. i ‘
l]ua]

......

Data (nonresident)

)] e .b

......

Data (nonresident)

—B - —

:. . Data (nonresident)
l l “ea I

Master File Table

- MFT Record
(huge/badly-fragmented file)

Std. Info. Attr. List (nonresident)
| |
| eee]

ﬁ;‘ Extent with part of attribute list

Data (nonresident)

. =

1 Data (nonresident)

B=E - —

Data (nonresident) ‘ ‘
1

Ly e+] Extent with part of attribute list

Data (nonresident)

B=E - —

Data (nonresident)
1

;I:TJ Extent with part of attribute list

Data (nonresident)

—

Data (nonresident)

. -

Named Data in a File System

index

file name directog file number StrUCtUE storage
offset offset block

Name
File Number
Next

Directories

file 5268830 eg‘]f’
“/home/tom” file
. . Music Work Free foo.txt Free
5268830 |88026158|35002320/85200219 Space 66212871 Space
\ \ \ \ \

Directories

* Directories can be files
— Map file name to file number (MFT #, inode num)

 Table of file name -> file number

— Small directories: linear search

Name
File Number
Next

file 5268830 egf
“/home/tom” file
. . Music Work Free foo.txt Free
5268830 88026158 35002320(85200219| gpace 66212871 Space
\ \ \ \ \

Large Directories: B-Trees

Search for hash("out2”) = 0x0000c194

B+Tre§e Root

Before [[00ad 1102 b0bf8201 cffla412
Child Pointer e ; ;

B+Tree Node B+Tree Node

Before |[0000c195 [00018201
Child Pomter ’ :

..........

B+Tree Node

..................

-——

B:I-";I:f.é"é"["e"af""""""""""s B+Tree Leaf B+Tree Leaf
Hash |{0000a0d1|0000b971 0000c194
Entry Pointer - P -
T R "'""""','!':-i--,-s_-f-,,-f-»--:-’---'-;.:'rr‘.'.'.'.-..-.:-.:-..-_:-_j-__-__.__.__________ nnnnnnnnnnnn A B
Name . .. file1 file2 file9841 outl out2 out16341
File Number [36210429| 983211 | 239341 231121 243212 | 841013 | 841014 324114

“out2”is file 841014

