Concurrency

Motivation

e Operating systems (and application programs)
often need to be able to handle multiple things
happening at the same time
— Process execution, interrupts, background tasks,

system maintenance

* Humans are not very good at keeping track of
multiple things happening simultaneously

* Threads are an abstraction to help bridge this gap

Why Concurrency?

Servers
— Multiple connections handled simultaneously

Parallel programs
— To achieve better performance

Programs with user interfaces

— To achieve user responsiveness while doing
computation

Network and disk bound programs
— To hide network/disk latency

Déja vu?

* Didn’t we learn all about concurrency in CSE
3327
— Practice
* Realistic examples, especially in the project

— Design patterns and pitfalls

 Methodology for writing correct concurrent code
— Implementation

* How do threads work at the machine level?

— CPU scheduling

* If multiple threads to run, which do we do first?

Definitions

* Athread is a single execution sequence that
represents a separately schedulable task

— Single execution sequence: familiar programming
model

— Separately schedulable: OS can run or suspend a
thread at any time

* Protection is an orthogonal concept

— Can have one or many threads per protection
domain

Threads

Single threaded user program
— one thread, one protection domain

Multi-threaded user program

— multiple threads, sharing same data structures,
isolated from other user programs

Multiprocess kernel
— Multiple processes, sharing kernel data structures

Multi-threaded kernel

— multiple threads, sharing kernel data structures,
capable of using privileged instructions

Thread Abstraction

* |Infinite number of processors
* Threads execute with variable speed
— Programs must be designed to work with any schedule

Programmer Abstraction Physical Reality

Threadsggggg 555 o 9

Processors§1§2§3§4§5§ 12

Running Ready
Threads Threads

Programmer vs.

Programmer’s

View
X =X + 1;
y =y +tXx;
z = X + 9Yy;

Possible

Execution
#1

X =X + 1;

y =y + Xj;

z = X + 39y;

Possible
Execution
#2

Thread is suspended
other thread(s) run
thread is resumed

Processor View

Possible
Execution
#3

Xx + 1;

y + X
Thread is suspended
other thread(s) run
thread is resumed

Possible Executions

One Execution

Thread 1

Thread 2

Thread 3

Another Execution

Thread 1

Thread 2

Thread 3 :|

Another Execution

Thread 1

Thread 2

Thread 3

Thread Operations

thread create(thread, func, args)
— Create a new thread to run func(args)
— 0S/161: thread_fork
thread_vyield()
— Relinquish processor voluntarily
— 0S/161: thread_yield
thread_join(thread)
— In parent, wait for forked thread to exit, then return
— 0S/161: tbhd
thread_exit
— Quit thread and clean up, wake up joiner if any
— 0S/161: thread_exit

Example: threadHello

#define NTHREADS 10
thread_t threads[NTHREADS];

for (i=0; i < NTHREADS; i++)

thread_create(&(threads[i]),

&go, i);
for(i = 0; i < NTHREADS; i++){

exitValue =
thread _join(threads|i]);

printf("Thread %d returned
with %ld\n", i, exitValue);

}
printf("Main thread done. \n");

void go (int n) {
printf("Hello from thread %d
\n", n);
thread_exit(100 + n);
// Not reached

)

threadHello: Example Output

bash-3.2$./threadHello

o
° Why mUSt th read Hello from thread 0
Hello from thread 1
”n : : Thread 0 returned 100
returned” print in fHolto from thread 3
.p Hello from thread 4
Order f Thread 1 returned 101

Hello from thread 5
Hello from thread

e What is maximum # Hello from thread

Hello from thread

of threads running Hello from thread

Hello from thread 9
Thread 2 returned 102
When th read 5 Thread returned 103
. r] || -? Thread returned 104
p rl ntS e O H Thread returned 105
Thread returned 106
* . Thread returned 107
o
IVI I n I m u m ? Thread returned 108
Thread 9 returned 109
Main thread done.

N oOoOoYN

OO bW

Fork/Join Concurrency

 Threads can create children, and wait for their
completion

* Data only shared before fork/after join

 Examples:

— Web server: fork a new thread for every new
connection

* As long as the threads are completely independent
— Merge sort

— Parallel memory copy

Thread Data Structures

Shared
State

Code

Per-Thread
State

Global
Variables

Thread Control
Block (TCB)

Stack
Information

Saved
Registers

Thread
Metadata

Per-Thread
State

Heap

Thread Control
Block (TCB)

Stack
Information

Saved
Registers

Thread
Metadata

Thread Lifecycle

Scheduler
Thread Creation Readv |~ ResumesThread) Thread Exit
P 3 ea y D P 3
Sthread_create() R R R R R R R PR RS Sthread_ex|t()
Thread Yield/Scheduler

A Suspends Thread
: sthread _yield()

Event Occurs Thread Waits for Event
(Other Thread Calls ™, S sthread_join()
sthread_join()

Implementing Threads: Roadmap

e Kernel threads

— Thread abstraction only available to kernel

— To the kernel, a kernel thread and a single
threaded user process look quite similar

* Multithreaded processes using kernel threads
(Linux, MacOS)

— Kernel thread operations available via syscall

* User-level threads
— Thread operations without system calls

Multithreaded OS Kernel

Code Kernel Thread 1 Kernel Thread 2 Kernel Thread 3 Process 1 Process 2 Kernel Thread 1
Kernel Globals TCB 1 TCB 2 TCB 3 PCB 1 PCB 2
Stack Stack Stack
Heap ol] s ‘ \
Process 1 Process 2
User-Level Processes Thread Thread
. . Stack Stack
NOTE: this picture has an error; ssepbtesel I I pbssseits
there should be an exception stack
. Code Code
in the kernel for each process, and
no separate kernel thread on the Globals Globals
”ght Heap Heap

Implementing threads

 Thread fork(func, args)
— Allocate thread control block
— Allocate stack
— Build stack frame for base of stack (stub)
— Put func, args on stack
— Put thread on ready list
— Will run sometime later (maybe right away!)

* stub(func, args): 0S/161 mips_threadstart
— Call (*func)(args)
— If return, call thread_exit()

Thread Stack

 What if a thread puts too many procedures on
its stack?

— What happens in Java?
— What happens in the Linux kernel?
— What happens in 0S/1617?

— What should happen?

Thread Context Switch

* Voluntary
— Thread_yield

— Thread_join (if child is not done yet)

* [nvoluntary
— Interrupt or exception
— Some other thread is higher priority

Voluntary thread context switch

Save registers on old stack
Switch to new stack, new thread
Restore registers from new stack
Return

Exactly the same with kernel threads or user
threads

— 0S/161: thread switch is always between kernel

threads, not between user process and kernel
thread

x86 switch threads (oldT, nextT)
(interrupts disabled)

Save caller’s register state
NOTE: %eax, etc. are ephemeral

This stack frame must match the
one set up by thread_create()

pushl %ebx
pushl %ebp
pushl %esi
pushl %edi

Get offsetof (struct thread, stack)
mov thread stack_ofs, %edx

Save current stack pointer to old
thread's stack, if any.

movl SWITCH_CUR(%esp), %eax
mov! %esp, (%eax,%edx,1)

Change stack pointer to new
thread's stack

this also changes currentThread
movl SWITCH_NEXT(%esp), %ecx
mov! (%ecx,%edx,1), %esp

Restore caller's register state.
popl %edi

popl %esi

popl %ebp

popl %ebx

ret

Two

threads call yield

Thread 1’s instructions
call thread_yield

save state to stack

save state to TCB
choose another thread
load other thread state

return thread_yield
call thread_yield

save state to stack
save state to TCB
choose another thread
load other thread state

return thread_yield

Thread 2’s instructions

call thread yield

save state to stack
save state to TCB
choose another thread
load other thread state

return thread_yield
call thread_yield

save state to stack
save state to TCB
choose another thread
load other thread state

Processor’s instructions
call thread_yield

save state to stack
save state to TCB
choose another thread
load other thread state
call thread_yield

save state to stack
save state to TCB
choose another thread
load other thread state
return thread_yield
call thread_yield

save state to stack
save state to TCB
choose another thread
load other thread state
return thread_yield
call thread_yield

save state to stack
save state to TCB
choose another thread
load other thread state
return thread_yield

Involuntary Thread Switch

* Timer or I/O interrupt
— Tells OS some other thread should run
* Simple version (0S/161)
— End of interrupt handler calls schedule()

— When resumed, return from handler resumes
kernel thread or user process

* Faster version (Linux)
— Interrupt handler returns to saved state in TCB
— Could be kernel thread or user process

Multithreaded User Processes
(Take 1)

e User thread = kernel thread (Linux, MacOS)

— System calls for thread fork, join, exit (and lock,
unlock,...)

— Kernel does context switch

— Simple, but a lot of transitions between user and
kernel mode

Multithreaded User Processes
(Take 1)

Code Kernel Thread 1 Kernel Thread 2 Kernel Thread 3 Process 1 Process 2 Kernel Thread 1
Kernel Globals [tc81 | [1eB2 | [pcB1 | [pcB2 |
Stack Stack
ol I I e]
Process 1 Process 2
User-Level Processes Thread 1 Thread 2 Thread 1 Thread 2
. . Stack Stack Stack Stack
NOTE: this picture has an error; | | o)) | i
there should be an exception
. Cod Cod
stack in the kernel for each - -
user thread, and no separate Globals Globals
kernel thread on the right. o Hean

Multithreaded User Processes
(Take 2)

* Green threads (early Java)
— User-level library, within a single-threaded process
— Library does thread context switch

— Preemption via upcall/UNIX signal on timer
interrupt

— Use multiple processes for parallelism
* Shared memory region mapped into each process

Multithreaded User Processes
(Take 3)

e Scheduler activations (Windows 8)
— Kernel allocates processors to user-level library

— Thread library implements context switch
— Thread library decides what thread to run next

* Upcall whenever kernel action requires (user-
level) scheduling decision

* Process assigned a new processor
* Processor removed from process
e System call blocks in kernel

Question

 Compare event-driven programming (333)
with multithreaded concurrency (451). Which
is better in which circumstances, and why?

