File Systems

Main Points

* File layout
* Directory layout

File System Design Constraints

* For small files:
— Small blocks for storage efficiency
— Files used together should be stored together

* For large files:
— Contiguous allocation for sequential access
— Efficient lookup for random access

 May not know at file creation
— Whether file will become small or large

File System Design

 Data structures
— Directories: file name -> file metadata

e Store directories as files

— File metadata: how to find file data blocks
— Free map: list of free disk blocks

* How do we organize these data structures?

— Device has non-uniform performance

Design Challenges

Index structure
— How do we locate the blocks of a file?

Index granularity
— What block size do we use?

Free space
— How do we find unused blocks on disk?

Locality
— How do we preserve spatial locality?
Reliability

— What if machine crashes in middle of a file system op?

File System Design Options

FAT FFS NTFS
Index Linked list Tree Tree
structure (fixed, assym) (dynamic)
granularity block block extent
free space FAT array Bitmap Bitmap
allocation (fixed (file)
location)
Locality | defragmentation| Block groups Extents
+ reserve Best fit
space defrag

Named Data in a File System

index

file name directog file number StrUCtUE storage
offset offset block

Microsoft File Allocation Table (FAT)

* Linked list index structure

— Simple, easy to implement

— Still widely used (e.g., thumb drives)
* File table:

— Linear map of all blocks on disk
— Each file a linked list of blocks

ocvooNOTLThWN—_OOLONOIAWN—O

[N I I R R e e e e e

FAT

MFT Data Blocks
< file 9 block 3
— file 9 block 0
—5 file 9 block 1
file 9 block 2

file 12 block 0

- file 12 block 1
N file 9 block 4

FAT

* Pros:
— Easy to find free block
— Easy to append to a file
— Easy to delete a file

* Cons:
— Small file access is slow
— Random access is very slow

— Fragmentation
 File blocks for a given file may be scattered
* Files in the same directory may be scattered
* Problem becomes worse as disk fills

Berkeley UNIX FFS (Fast File System)

* inode table
— Analogous to FAT table

* inode
— Metadata

* File owner, access permissions, access times, ...
— Set of 12 data pointers
— With 4KB blocks => max size of 48KB files

FFS inode

Metadata
— File owner, access permissions, access times, ...

Set of 12 data pointers
— With 4KB blocks => max size of 48KB files

Indirect block pointer
— pointer to disk block of data pointers

Indirect block: 1K data blocks => 4MB (+48KB)

FFS inode

Metadata

— File owner, access permissions, access times, ...

Set of 12 data pointers
— With 4KB blocks => max size of 48KB

Indirect block pointer

— pointer to disk block of data pointers

— 4KB block size => 1K data blocks => 4MB
Doubly indirect block pointer

— Doubly indirect block => 1K indirect blocks
— 4GB (+ 4MB + 48KB)

FFS inode

Metadata
— File owner, access permissions, access times, ...

Set of 12 data pointers
— With 4KB blocks => max size of 48KB

Indirect block pointer
— pointer to disk block of data pointers
— 4KB block size => 1K data blocks => 4MB

Doubly indirect block pointer
— Doubly indirect block => 1K indirect blocks
— 4GB (+ 4MB + 48KB)
Triply indirect block pointer
— Triply indirect block => 1K doubly indirect blocks
— 4TB (+ 4GB + 4MB + 48KB)

Inode Array Triple Double

Indirect Indirect Indirect Data
Inode Blocks Blocks Blocks Blocks
R R R R R R PP P TR TP PP PP PR PR 3
... >
File Metadata
D|rect POInteré E B R R R R TR R TR PR PRI 3
DP e D R
DP :
DP .. > .
DP P :
................... >
DP
DP
DP P
DP § ; E > ::::::: > ceecsecsessscsscsccssscsscsd)
DP P :
DP :
D|rec’[Pomter: S > PP PR TRPRRRRRRD 3
|nd|reCt POInter R X T RITRTRTS > I R R T Pl Peecccccccccccccnccccancnns >
.| Dbl Indirect Ptr. |-eoeeiennnn
Tr|p| Indirect Ptr. |---oeeeeeeeeee > ::::::::; e, > errerererereenened >
...................) essscssse
...................))

FFS Asymmetric Tree

* Small files: shallow tree
— Efficient storage for small files

e Large files: deep tree
— Efficient lookup for random access in large files

e Sparse files: only fill pointers if needed

FFS Locality

* Block group allocation
— Block group is a set of nearby cylinders
— Files in same directory located in same group
— Subdirectories located in different block groups

* inode table spread throughout disk

— inodes, bitmap near file blocks

* First fit allocation
— Small files fragmented, large files contiguous

Block Group 0

Block Group 1

Block Group 2

FFS First Fit Block Allocation

In-Use Free
Start of BIOCK BJ})Ck
Block EIEEEEE O SRl [Bl B [[[T[] e

Group

FFS First Fit Block Allocation

Start of Write Two Block File

Block DI [[O DO [[[[T TTTTT]eee
Group

FFS First Fit Block Allocation

Start of Write Large File

BIock|||||||||||||||¥:|Z\l:W:Dm

Group

FFS

* Pros
— Efficient storage for both small and large files

— Locality for both small and large files
— Locality for metadata and data

* Cons

— Inefficient for tiny files (a 1 byte file requires both an
inode and a data block)

— Inefficient encoding when file is mostly contiguous on
disk (no equivalent to superpages)

— Need to reserve 10-20% of free space to prevent
fragmentation

NTFS

* Master File Table
— Flexible 1KB storage for metadata and data

* Extents
— Block pointers cover runs of blocks
— Similar approach in linux (ext4)
— File create can provide hint as to size of file

* Journalling for reliability
— Next chapter

Master File Table

NTFS Small File

- MFT Record (small file)

Std. Info.

File Name

Data (resident)

(free)

MFT

NTFS Medium-Sized File

Start

O

Q

=

a | m

2%

D

=1
MFT Record o
o Std. Info. | File Name | Data (nonresident) (free)
e Start

O

=

o | ©

g [m

5| X

D

=

MFT

NTFS Indirect Block

MFT Record
(part 1) .:..s
Std. Info. Attr.list File Name Data (nonresident)
: S
MFT Record
(part2) g)
Std. Info. Data (nonresident) (free)

MFT MFT

MFT Record MFT Record
(small file) (huge/badly-fragmented file)

Std. Info. Data (resident) Std. Info. Attr.list (nonresident)

MFT Record |:| Extent with part of attribute list

(normal file) I S

Std. Info. Data nonre3|dent Data (nonresident)

MFT Record . Data (nonresident)

(big/fragmented file) I ’|:| i
Std. Info. | Attr.list Data(nonresment , |:|

I:I I: Data (nonresident)
...... I |:| |:| WU
Data (nonresident)
] .0 S
L

HOT E3%

Data (nonresident)

Data (nonresident)

T U T o H

R . H

Data (nonresident)

Data (nonresident)

U oo U 0 H T

Named Data in a File System

index

file name directog file number StrUCtUE storage
offset offset block

Directories Are Files

) S S

()
music 320
work 219
foo.txt 871

Recursive Filename Lookup

S
File2 | bin 737
“I” | usr 924
home158
A
~->Fijle 158 | mike 682
“/home” | ada 818
tom 830
=->File 830 | music 320
“Thome/tom” | work 219
foo.txt 871~
oo File 871 | 1he qui b
“IThome/tom/foo.txt” | brown fox
jumped
over the
lazy dog.

Directory Layout

Directory stored as a file
Linear search to find filename (small directories)

File 830
“/Thome/tom”
Name . . music | work foo.txt m
File Number | 830 158 320 219 |Free Space| 871 Free Space S.,
Next : : : : : ®

Large Directories: B Trees

Search for Hash (foo.txt) = 0x30

Root
Before| 240 | 510 | 730 | 980
Child Pointer
Child Child
Before | 58 121 | 180 | 240 780 | 841 | 930 | 980
chidPointer | 1 | : | < | : | e
Leaf il oo Leaf
Hash| 15 30 44 58
Entry Pointer | ¢ | | | i | e ——
Hash Number
Name foo.txt | music work | code bin test
File Number | 830 158 871 320 219 3 014 324

Large Directories: Layout

File Containing Directory

Name music | work Root | Child | Leaf Leaf | Child
File Number 320 219

Directory Entries B+Tree Nodes

