
Project 3 Design 

Considerations
SECTION… 6? 5? 7?



Preamble

 I know you all are waist-deep in ASST2 right now

 At the very least pay attention enough that you 

can think to yourself, “Oh yeah, I think he 

mentioned that in the slides” later when working 

on your ASST3 design doc



Address Translation

 On memory access: check TLB

 TLB miss? Trap to kernel!

 Kernel looks through page table(s)

 Page table hit?

 In physical memory? Load the TLB!

 Not in physical memory? Swap in the proper page!

 Bad address entirely? Kill the program!

 Example on board



TLB

 Entries managed by kernel

 Relevant functions:

 tlb_read/write/random/probe

 arch/mips/include/tlb.h

 TLB miss  trap to kernel

 vm_fault(int faulttype, vaddr_t faultaddress)

 TLB entry bits

 TLBHI_VPAGE: virtual page index (mask)

 TLBLO_PPAGE: physical page index (mask)

 TLBLO_DIRTY: whether page is writable (flag)

 TLBLO_VALID: whether page is valid (flag)

 What should happen on a context switch?

 Eviction scheme?



TLB (cont.)

 TLB shootdown!!

 pew pew pew

 OS/161 terminology is slightly different from ours

 ipi_tlbshootdown: shoot down specified entries on 

specified CPU

 vm_tlbshootdown: shoot down specified entries on this 

CPU

 vm_tlbshootdown_all: shoot down all entries on this 

CPU

 You need to implement vm_tlbshootdown/_all

 Note: Shooting down all entries technically shoots down 
any specified entries



Page Tables

 Segments

 Matches addrspace API and ELF layout

 What’s in a segment?

 Page range

 Permissions

 Multiple levels

 Don’t want to keep entire address space for each 
process

 Level of splitting is up to you

 What will your page table look like?

 What will your page table entries look like?



Swapping

 We can’t fit every user page in memory

 Swap pages out to disk

 Eviction scheme?

 Protip: use LHD0 raw

 "lhd0raw:"

 Remember that vfs_open mangles the path string

 Need to manage disk locations

 How will you represent this information?

 Need to map pages to disk locations

 Where will you keep this information?



Core Map

 Mapping from physical pages to virtual pages

 Remember: core map must also be in physical 

memory!

 Core map must be in core map

 How big should the core map be?

 How many entries does the core map have?

 How do you reserve space for it?

 ram_stealmem()

 When should you reserve space for it?



Kernel / User Memory

 arch/mips/include/vm.h:42

 Kernel memory is linearly mapped

 arch/mips/include/vm.h:68

 Might be useful to define a corresponding macro

 What happens when you ask for address…

 0x00406a9b?

 0x8160a4df?

 How do you access physical address 0x07f29c20?

 Kernel and user pages must coexist

 Which has priority?


