
Project 3 Design

Considerations
SECTION… 6? 5? 7?

Preamble

 I know you all are waist-deep in ASST2 right now

 At the very least pay attention enough that you

can think to yourself, “Oh yeah, I think he

mentioned that in the slides” later when working

on your ASST3 design doc

Address Translation

 On memory access: check TLB

 TLB miss? Trap to kernel!

 Kernel looks through page table(s)

 Page table hit?

 In physical memory? Load the TLB!

 Not in physical memory? Swap in the proper page!

 Bad address entirely? Kill the program!

 Example on board

TLB

 Entries managed by kernel

 Relevant functions:

 tlb_read/write/random/probe

 arch/mips/include/tlb.h

 TLB miss trap to kernel

 vm_fault(int faulttype, vaddr_t faultaddress)

 TLB entry bits

 TLBHI_VPAGE: virtual page index (mask)

 TLBLO_PPAGE: physical page index (mask)

 TLBLO_DIRTY: whether page is writable (flag)

 TLBLO_VALID: whether page is valid (flag)

 What should happen on a context switch?

 Eviction scheme?

TLB (cont.)

 TLB shootdown!!

 pew pew pew

 OS/161 terminology is slightly different from ours

 ipi_tlbshootdown: shoot down specified entries on

specified CPU

 vm_tlbshootdown: shoot down specified entries on this

CPU

 vm_tlbshootdown_all: shoot down all entries on this

CPU

 You need to implement vm_tlbshootdown/_all

 Note: Shooting down all entries technically shoots down
any specified entries

Page Tables

 Segments

 Matches addrspace API and ELF layout

 What’s in a segment?

 Page range

 Permissions

 Multiple levels

 Don’t want to keep entire address space for each
process

 Level of splitting is up to you

 What will your page table look like?

 What will your page table entries look like?

Swapping

 We can’t fit every user page in memory

 Swap pages out to disk

 Eviction scheme?

 Protip: use LHD0 raw

 "lhd0raw:"

 Remember that vfs_open mangles the path string

 Need to manage disk locations

 How will you represent this information?

 Need to map pages to disk locations

 Where will you keep this information?

Core Map

 Mapping from physical pages to virtual pages

 Remember: core map must also be in physical

memory!

 Core map must be in core map

 How big should the core map be?

 How many entries does the core map have?

 How do you reserve space for it?

 ram_stealmem()

 When should you reserve space for it?

Kernel / User Memory

 arch/mips/include/vm.h:42

 Kernel memory is linearly mapped

 arch/mips/include/vm.h:68

 Might be useful to define a corresponding macro

 What happens when you ask for address…

 0x00406a9b?

 0x8160a4df?

 How do you access physical address 0x07f29c20?

 Kernel and user pages must coexist

 Which has priority?

