CSE 451
Section 4

Project 2 Design Considerations

Overview

* 4 major sections:

File management

File related system calls
open, close, read, write

Process management

Process related system calls
getpid, fork, exec, waitpid, _exit

File Management

* Need a per-process data structure to organize files — a file
table
* Things to consider:
What data structure will you use?
What will data structure entries hold?
How will it be synchronized?

* Hint: open files are represented by unique integer called a file
descriptor

File System Calls - open

int open(const char *filename, int flags)

Takes in a filename of file to open

Flags determine read/write permissions and create/truncate
details — refer to man pages

Returns a non-negative file descriptor on success, -1 on failure

Note: ignore the optional mode

File System Calls - open

* File descriptors O, 1, and 2 are reserved for stdin, stdout, and
stderr respectively
* Attached to the console —named “:con
* 0S/161 provides the virtual file system (vfs). It is a layer of
abstraction between the os and file system
You only need to interact through the vfs
Carefully read through the files in kern/vfs

Carefully read through vnode code — abstract representation of a
file provided by 0S/161

1

File System Calls - close

* int close(int fd)
* Takes in the file descriptor of the file to close.

* Things to consider:
Multiple processes may reference the same file.

File System Calls - read and write

int read(int fd, void *buf, size_t buflen)
int write(int fd, const void *buf, size_ t nbytes)

Read and write to the file given by file descriptor

Depend on the use of uio and iovec structs to do the
actually reading and writing

Look through loadelf.c to see how to use uio and iovec

uio structs represents a user or kernel space buffer

iovec structs are used for keeping track of I/O data in the kernel

Process Management

* Need a way to keep track of processes running on your
machine

* Processes are identified by a unique integer called the process
id (pid)
* Things to consider:
What data structure will you use?

What will data structure entries hold?
Hint: address space, file tables, etc.

How will pids be uniquely assigned?
How will it be synchronized?

Process System Calls - fork

pid_t fork(void)
Create a new process & thread, identical to the caller

Child returns 0 and the parent returns the child’s pid

Things to consider:
How to copy/duplicate process related state
How to make child return 0 and behave exactly like the parent
Check out mips_usermode() and enter_forked process()

When a process makes a system call, where how does it know where to
return?

It saves a return address on the trapframe

Trapframe needs to be copied!

Process System Calls - exec

* int execv(const char *program, char **args)

* Replaces the currently executing program with a newly
loaded program image

* program: name of program to be run

* args: array of O-terminated strings. The array itself should
be terminated by a NULL pointer

Process System Calls - exec

« execv() is quite similar to runprogram() in
syscall/runprogram.c.

* Remember to test running the shell after exec works!

* Most difficult part is copying in user arguments correctly.

User passes in pointers to the arguments — need to copyin both
the pointers and strings.

Then correctly format and copyout the arguments onto the
process’s stack.

Need to adjust pointers so they point to the copied strings
Remember to word align pointers!

Look at vm/copyinout.c

Process System Calls - exec

* Exec should set up the process’ stack to look like this
example of passing in 2 arguments “Is foo”

SO0
799 1
708 o
707 o
706 f
(795 [padding]
704 i
793 8
TO2 1
701 i
700 1
789 1
THE [null-terminate]
TRT argv|l
TRE argv|1
BES argv]1
(784 argv[1] = 796
TR argv|(]
TR2 argv[il
7RI argv|0
T80 | argv[(] = 792 = stackptr

Process System Calls — waitpid

pid_t waitpid(pid t pid, int *status, int options)
Wait for the process specified by pid to exit

Returns pid of process waiting on

Status: return parameter for exit status

Closely tied to pid management and synchronization

Things to consider:

How can you make a parent wait for a child? What happens if a
child tries to wait for its parent?

You may need to add data to stuct proc to support this

Process System Calls - _exit

* void _exit(int exitcode)
* Causes the current thread to exit
* Also closely tied to pid management and synchronization

* Things to consider:
What are resources we need to free?
Do we always free all resources?
When do we free the process itself?
What about the exit code?
Don’t forget kill curthread()

General Advice

Remember to check if kmalloc fails!

Read syscall man pages and pay careful attention to the many
errors that can be thrown

Errors should be handled gracefully — do not crash the OS

You may need to increase your system’s memory (again) in
order for fork and exec to work

References

* Slides / Tutorial pages from Harvard:

http://www.eecs.harvard.edu/~margo/cs161/resources/sections/
2013-MMM-ASST2.pdf

http://www.eecs.harvard.edu/~margo/cs161/resources/sections/
2013-mxw-a2.pdf

http://www.eecs.harvard.edu/~margo/cs161/resources/sections/2013-MMM-ASST2.pdf
http://www.eecs.harvard.edu/~margo/cs161/resources/sections/2013-mxw-a2.pdf

