
Section 10

CSE 451 Winter 2013

Anton Osobov

aosobov@cs

Material adapted from previous offerings of CSE 451

Specifically from slides by Gary Kimura, Ed Lazowska, and Tom Anderson

Reminders

• No Quiz Tomorrow (3/15)

• Final

– Wednesday, 3/20, 2:30 - 4:20

– Closed book, closed note

Topics for Today

• Final Review

– Will go over some key concepts you should understand

– These slides may not cover all topics that will be on the

final

Processes

• Process = fundamental abstraction for program

execution

• Process made up of:

– an address space which contains:

• the code for the running program

• the data for the running program

– at least one thread with state

• Registers, IP

• Stack and stack pointer

– a set of OS resources

• open files, network connections, sound channels, etc

Processes

• State queues

– Which states, what transitions are possible?

– When do transitions happen?

Processes

• State queues

– Which states, what transitions are possible?

– When do transitions happen?

Processes

• Process manipulation

– What does fork() do?

– What about exec()?

Threads

• What is a thread?

– Why are they useful?

• How does thread scheduling differ from process

scheduling?

Threads v Processes

Overview
• Process

– Isolated with its own virtual address space

– Contains process data like file handles

– Lots of overhead

– Every process has at least one kernel thread

• Kernel Threads

– Shared virtual address space

– Contains running state data

– Less overhead

– From the OS’s point of view, this is what is scheduled to run on a CPU

• User Threads

– Shared virtual address space, contains running state data

– Kernel unaware

– Even less overhead

Threads v Processes

Trade-offs

• Process

– Secure and isolated

– Kernel aware

– Creating a new process brings lots of overhead (address space)

• Kernel Threads

– No need to create a new address space

– No need to change address space in context switch

– Kernel aware

– Still need to enter kernel to context switch

• User Threads

– No new address space, no need to change address space

– No need to enter kernel to switch

– Kernel is unaware. No multiprocessing. Synch I/O block all user threads

Threads v Processes

• When would using separate processes be advantageous

over using separate threads?

Threads v Processes

• When would using separate processes be advantageous

over using separate threads?

– Separate processes ideal for large tasks that share little or no data

– Ideal if each processes is “heavyweight”

– Example: Chrome uses separate processes for tabs to get

sandboxing

Scheduling

• When does scheduling happen?

– Job changes state, interrupts, exceptions, job creation

• Scheduling goals?

– Maximize CPU utilization

– Maximize job throughput

– Minimize {turnaround time | waiting time | response time}

– Batch vs interactive: what are their goals?

• Throughput/utilization vs response time

• What is starvation? What causes it?

• Know the differences between scheduling algorithms:

– FCFS/FIFO, SPT, RR, priority, MLFQ

Synchronization

• Why do we need it?

– Data coordination? Execution coordination?

– What are race conditions? When do they occur?

– When are resources shared? (variables, heap objects, ...)

• What is mutual exclusion?

– What is a critical section?

– What are the requirements of critical sections?

• Mutual exclusion, progress, bounded waiting, performance

– What are the mechanisms for programming critical sections?

• Locks, semaphores, monitors, condition variables

Locks

• What does it mean for acquire/release to be atomic?

Monitors

• When would it make sense to use a Mesa monitor over a

Hoare monitor, and vice versa?

Monitors

• When would it make sense to use a Mesa monitor over a

Hoare monitor, and vice versa?

– A Mesa monitor is better used for situations where overall speed is

more important, because a context switch isn’t required.

– A Hoare monitor is better for situations where a thread absolutely

needs to execute immediately after it finishes waiting, e.g. if the

thread is running a time-critical task.

Virtual Memory

• What happens on a virtual memory access?

Virtual Memory

• What happens on a virtual memory access?

– Address translation

• Page table lookup

• TLB

– Page fault?

• Page replacement

• Process/queue management

• How does all of the overhead pay off?

– Locality!

• Temporal and spatial

Virtual Memory

page

frame 0

page

frame 1

page

frame 2

page

frame Y

…

page

frame 3

physical memory

offset

physical address

page frame # page frame #

page table

offset

virtual address

virtual page #

Note: Each process

has its own page table!

Page Replacement

• Algorithms:

– Belady’s, FIFO, LRU, LRU Clock, Working Set, PFF

– Local vs global

• How/why are any of these better or worse than the others?

• What happens when paging goes wrong?

– Thrashing!

More Virtual Memory

• What problem does the TLB address?

More Virtual Memory

• What problem does the TLB address?

– Increases speed of virtual address translation

More Virtual Memory

• What problem does the TLB address?

– Increases speed of virtual address translation

• What problem do two-level page tables address?

– What's the key concept?

More Virtual Memory

• What problem does the TLB address?

– Increases speed of virtual address translation

• What problem do two-level page tables address?

– Huge physical memory requirements of page tables

– What's the key concept?

• Indirection

Two-Level Page Tables

Course Evaluations!

