CSE 451 Winter 2013

Section 7

Anton Osobov
aosobov@cs

Material adapted from previous offerings of CSE 451

Reminders

* Quiz tomorrow (2/22)

* Project4is up
— Due Wednesday, 3/13
— Group project

Topics for Today

* Project 3 Recap
 Virtual Address Spaces
* Project 4

Project 3 Recap

 How was performance?
— Async vs. Sync?
— Sync # of threads?
— Async # of calls?
— Buffer size?

Project 3 Recap

« Calls to disk are all sequential access!
— Seems like concurrency won't help much...

Project 3 Recap

« Calls to disk are all sequential access!

— Seems like concurrency won't help much...
* Disk Caching!

— Optimizations to keep pages in memory

Project 3 Recap

* Write caching

user code . kernel code RESRED .

WriteFile(&buf) 1 —— NtWriteFﬂe()-%lTw

« Read caching

now, or sometime earlier
user code 5 kernel code Ll

ReadFile(&buf) # NtReadFile() *___‘r* ,,

Project 3 Recap

 Disk scheduler can minimize amount of I/O
petween memory and disk

« Delay write to disk as long as possible
 Reads must be immediate

— If a write occurs on a file, a read on the same file
must fetch from disk

Storage Latency:
How Far Away is the Data?

Andromeda
109 Tape /Optical 2,000 Years
Robot
10° Disk 2 Years
100 Memory 1500

10 On Board Cache

2 On Chip Cache w y
1 Registers 1 My Head 1 min

10 min

© 2004 Jim Gray, Microsoft Corporation

Topics for Today

e
+ Project 3-Recap
 Virtual Address Spaces
* Project 4

Virtual Address Spaces

Process Process
threads memory threads memory

USEr space

kernel space
NtReadFile(void* userbuf) {

CSE45 | .readcalls++;

system call kernel memory

® Wait, if pointers are just numbers ...
- how does each process get a private memory space!
- how does the kernel get a private memory space’
- how does the kernel access process memory?

Virtual Address Spaces

here is a pointer
p:| 0x0041ab8fe023ecd5

process address space

0 ; 24|

physical memory

284-

Virtual Address Spaces

here is a pointer

p:| 0x0041ab8fe023ecd5 physical
memory

process address space

264

page table

Virtual | Physical
Address| Address amemenes >

Ve mm=m = Ox0040ab...

Virtual Address Spaces

Pi address space
code DLL data stack
0 ; 264

physical
memory

: page
"""" > table | | =

On context switch:

- install page table for the
new process in hw

(on xB6: write pointer to %cr3 register)

page
A > table | | >

P2 address space
code DLL data stack
0 264

Virtual Address Spaces

® Great, that explains how processes are isolated

® What about the kernel?

- how does the kernel get a private memory space!’
- how does the kernel access user memory!?

NtReadFile(void* userbuf) {

CSE45 | readcalls++:

Virtual Address Spaces

physical
P1 address space memory

user space kernel space

0 ; 254 |

i page
bormmnes >\ table | | >

page
A > table | | >

P2 address space

user space kernel space

0 2%4- |

Virtual Address Spaces

physical
memory

P1 address space

user space kernel space

0 : 264-]

] B | >

® Kernel and user share the address space
- don’t need to install a new page table when entering the kernel
= this is how system calls access user space

MNtReadFile(void* userbuf) {

CSEA45 | readcalls++:

system cal

Virtual Address Spaces

physical

Pi address space memory

user space kernel space

0 ; 25|

: page
I > table | | >

® How is the kernel isolated from the user?

Virtual Address Spaces

- 0 000 O 0 0_____0_/_/__—_"N71
physical
memory

P1 address space
user space kernel space
0 g | 26|
5 | page table
: I.I Virtual | Physical | Protect
| |Address|Address| Bits
---Irl-ill o004 lab... W ouser fe-=======-- >
I_. O X user

® How is the kernel isolated from the user?
- set protection bits in the page table:
hw triggers a page fault if user code tries to access kernel memory

Virtual Address Spaces

P address space

user space kernel space
0 2541

® So user and kernel share the address space. Great!

What could possibly go wrong?

NtReadFile(void* userbuf,] - _
int userlen) ® What if userbuf is invalid?

{ e.g. NULL or

points at an unmapped page
memcpy(userbuf,

FileData, ° .)
FileDataSize); The kernel will segfault!

Virtual Address Spaces

P address space

user space kernel space

0 264
oops!

® So user and kernel share the address space. Great!
What could possibly go wrong?

. Lk . . -
SR e e What if userbuf points into
int userlen) -
{ kernel space?
e.g. malicious user code “guesses”
memcpy(userbuf, a pointer value
FileData,
FileDataSize). ® The kernel data structures will
be corrupted!

Always validate user pointers in the kernel
- 0 00— 0___0_0_0_0_/____@_/0/0@ "7

® Check that user pointers point at User memory, not kernel memory

user space kernel space
user buffer

bad!

Windows Linux
ProbeForVWrite(userbuf, length); access_ok(userbuf, length);

® Guard kernel code that accesses user pointers against segfaults

tr}:“{emcw(T copy_to_user(userbuf,
FileData, FileData,
. FileDataLen); Linux FileDataLen);
Windows } except { /I copy_to_user deals with
x = GetExceptionCode(); I a segfault if it happens

... I/ oops, handle segfault
}

Always validate user pointers in the kernel
- 0 00— 0___0_0_0_0_/____@_/0/0@ "7

® An example from Project 2:

MNtQuerySystemInformation(Cse451* info, ...)
{

Il copy event buffer to user space
memcpy(info->buffer, CseEventBuffer, info->bufferSize);

Always validate user pointers in the kernel
- 0 00— 0___0_0_0_0_/____@_/0/0@ "7

® An example from Project 2.

Added a fix. Is this enough? What could go wrong?

MNtQuerySystemInformation(Cse45|* info, ...)
{

ProbeForWrite(info->buffer, info->bufferlize);

try {
memcpy(info->buffer, CseEventBuffer, info->bufferSize);
} except {

Always validate user pointers in the kernel
- 0 00— 0___0_0_0_0_/____@_/0/0@ "7

® An example from Project 2.
Added a fix. Is this enough? What could go wrong!?

NtQuerySystemInformation(Cse451* info, ...)

{

What if another thread ProbeForWrite info->buffer, info->bufferSize);

changes info->buffer ;
after ProbeForWrite and memcpy(info->buffer, CseEventBuffer, info->bufferSize);
before memcpy? } except {
oops! }
Buggy user Thread, Threads
code example MNtQuerySystemlnformation(info); info->buffer = Oxfff..:

(a kernel address)

Always validate user pointers in the kernel
- 0 00— 0___0_0_0_0_/____@_/0/0@ "7

® An example from Project 2.

The full fix:
NtQuerySystemInformation(Cse45 |* info, ...)
{
t tmpBuffer = info->buffer; // capture pointer
capture tmpSize = info->bufferSize;

ProbeForWrite(tmpBuffer, tmpSize);
try {

memcpy(tmpBuffer, CseEventBuffer, tmpSize);
} except {

Topics for Today

N
+ Project 3-Recap
VirtwalAddress-Spaces
* Project 4

Project 4

« Goals: Modify the FAT file system to

— Make all directories sortable
— Compact directories

The FAT File System

FAT
clusters

boot sector (file allocation table)

data

|
| Goal of FAT: store files and directories!

Size of FAT

Size of data area

Size of each cluster
Location of root dirent

The FAT File System

g

FAT
boot sector (fle allocation table) clusters data

| Goal of FAT: store files and directories!

| Each cluster either:
» Stores data for a file or...
Size of FAT » Stores lists of files in a directory (dirent)

Size of data area
Size of each cluster
Location of root dirent

The FAT File System

.

FAT
(file allocation table) clysters data

boot sector

| Goal of FAT: store files and directories!

) Each cluster either:

+ Stores data for afile or...
Size of FAT + Stores lists of files in a directory (dirent)
Size of data area
Size of each cluster File Allocation Table
Location of root dirent « Linked list of clusters
* As many entries as there are clusters

The FAT File System

* S0, how do we get files?

The FAT File System

FAT free cluster
' - =- 5 L
FFFF 0002 0003 FFFF FFFF 4 0006 o FFFEE 4 0000 -
Data area
free cluster
B | al =] | |
/ I | B BT 4 / 5 k 6 7
. More
Aoot dirents subdir dirents subdir dirents
HAe: filel.oxt name: “x0.txt” name: “yl.ext”

first cluster: |

first cluster: 5

name: “file2.txt”
first cluster: 4
name: “subdir”

m'mlm

first cluster: 100

first cluster: 401

name: “x|.oxt”
first cluster: 205

name: “y2.ext”
first cluster: 402

*

name; “x2.txt’
first cluster: 300

name: “y3.txt”
first cluster: 403

Project 4

« Goal: keep dirents sorted in each directory

— Note: This means implementing your own sorting
algorithm!

PACKED_DIRENT (from fat.h)

FileName: Wfilel . txt”
LastWriteTime: .
FirstClusterQfFile: 1

FileSize: 4052

Project 4

« Kernel data structures: on-disk (fat.h)

— PACKED BOOT_SECTOR (boot info, etc — don't
modify)

— BIOS_PARAMETER_BLOCK (boot info, etc — don't
modify)

— PACKED_DIRENT(DIRENT struct)

« Kernel data structures: in-memory (fatstruct.h)

— VCB (info about mounted volume)
— FCB (cached files)
— DCB (cached directories)

Project 4

FCB

/ DCB (opened file)
DCB

DCB
VCB —>| Root DCB

FCB | (opened file)

Project 4

* Resort dirents when:
— Creating a new file (name, extension, cluster number)
— Closing a file (timestamp, size)
— Re-sorting the entire dirent

Topics for Today

N
+ Project 3-Recap

VirtwalAddress-Spaces

+ Project 4

