
Section 4

CSE 451 Winter 2013

Anton Osobov

aosobov@cs

Some material adapted from previous offerings of CSE 451

Reminders

• Quiz tomorrow (2/1)

• Project 3 is up

– Due Wednesday, 2/20

– Group project

Topics for Today

• Project 3

• Processes and Threads

Project 3

• Project groups assigned
– Each group identified by a letter

– Project directory at

• /projects/instr/13wi/cse451/<group letter>

– You can use this space to set up an SVN repository

– Can also use online version control as long as it is private

• GitHub, Bitbucket, etc.

Project 3

• Implement a file-copy utility

– This is done entirely in user space!

• Three parts

– Multithreaded + synchronous I/O

– Single threaded + asynchronous I/O

– Performance analysis of these two implementations

I/O in Windows

• Advantages of sync I/O?

I/O in Windows

• Advantages of sync I/O?

– Easier to program

• Don’t have to explicitly synchronize with I/O driver

• Advantages of async I/O?

I/O in Windows

• Advantages of sync I/O?

– Easier to program

• Don’t have to explicitly synchronize with I/O driver

• Advantages of async I/O?

– Potentially more efficient

• You can overlap work with the I/O request

• How can we make sync I/O go faster?

I/O in Windows

• Advantages of sync I/O?

– Easier to program

• Don’t have to explicitly synchronize with I/O driver

• Advantages of async I/O?

– Potentially more efficient

• You can overlap work with the I/O request

• How can we make sync I/O go faster?

– Use more threads!

I/O in Windows

I/O Driver

- writes to &buf

- notifies when done

I/O Driver

- writes to &buf

- notifies “ev” when

done

Project 3

Multithreaded + Sync I/O

Source Files
Destination

Files

Project 3

Single Threaded + Async I/O

Source Files Destination

Files

Project 3

• Three parts
– Implement MtFileCopy (multithreaded)

– Implement MtFileCopyAsync (single threaded)

– Performance analysis

Project 3

MtFileCopy(ThreadCount=3, BufferSize=4096, files ..)

1. Break files into chunks of work (use chunkSize == ?)

2. Schedule chunks to threads (each thread copies one chunk at a time)

Project 3

• What goes into efficient schedule?

Project 3

• What goes into efficient schedule?

– Load balancing (keep threads busy)

– Locality
• Assign threads to different files?

• Have threads team up on the same file?

Project 3

• Scheduling approaches
– Build a schedule up-front (doesn’t respond well to performance

glitches?)

– Put chunks in a FIFO queue

Project 3

MtFileCopyAsync(BufferCount=3, BufferSize=4096, files ..)

• Same idea. Except

– You have just one thread

– That thread does 3 asynchronous chunk copies at once

Async version

Project 3

What experiments could I run?

• Use diverse input sets

Big files many files using network drives

Small files few files using local hard drives

 using USB drives

• Time your program on each input set

– Use different values for /T and /B

– Use sync and async

• Analyze

– What is the best configuration

– What is the worst configuration

– Make graphs

Topics for Today

• Project 3

• Processes and Threads

Processes

Recap from lecture

• What is a process?

Processes

Recap from lecture

• What is a process?

– An execution entity

– A running instance of a program

– Has at least

• An address space

• The code for the running program

• The data for the running program

• At least one thread

• A set of OS resources

Processes

• How does an OS on single processor

hardware run multiple processes?

Processes

• How does an OS on single processor

hardware run multiple processes?

Processes

• What does the OS do when there are no

processes to run?

Processes

• What does the OS do when there are no

processes to run?

– Run an idle process

• Periodically checks for any new tasks to run

• Loops the HLT instruction to save CPU time

Threads

States of a thread

Threads

• Why use threads?

Threads

• Why use threads?

– Perform multiple tasks at once (reading and

writing, computing and receiving input)

– Take advantage of multiple CPUs

– More efficiently use resources

Threads v Processes

Overview
• Process

– Isolated with its own virtual address space

– Contains process data like file handles

– Lots of overhead

– Every process has at least one kernel thread

• Kernel Threads

– Shared virtual address space

– Contains running state data

– Less overhead

– From the OS’s point of view, this is what is scheduled to run on a CPU

• User Threads

– Shared virtual address space, contains running state data

– Kernel unaware

– Even less overhead

Threads v Processes

Trade-offs

• Process

– Secure and isolated

– Kernel aware

– Creating a new process brings lots of overhead (address space)

• Kernel Threads

– No need to create a new address space

– No need to change address space in context switch

– Kernel aware

– Still need to enter kernel to context switch

• User Threads

– No new address space, no need to change address space

– No need to enter kernel to switch

– Kernel is unaware. No multiprocessing. Synch I/O block all user threads

Threads v Processes

Implicit overheads

• Context switching between processes is very

expensive because it changes the address space
– But changing the address space is simply a register change in the

CPU?

– Requires flush the Translation Look-aside Buffer

• Context switching between threads has a similar

overhead. Suddenly the cache will miss a lot.

Threads v Processes

Suppose that a programmer mistakenly creates a

local variable v in one thread t1 and passes a

pointer to v to another thread t2. Is it possible for

a write by t1 to some variable other than v to

change the state of v as observed by t2?

