CSE 451 Winter 2013

Section 4

Anton Osobov
aosobov@cs

Some material adapted from previous offerings of CSE 451

Reminders

* Quiz tomorrow (2/1)

* Project 3is up
— Due Wednesday, 2/20
— Group project

Topics for Today

* Project 3
 Processes and Threads

Project 3

* Project groups assigned

— Each group identified by a letter

— Project directory at
 /projects/instr/13wi/cse451/<group letter>
— You can use this space to set up an SVN repository

— Can also use online version control as long as it is private
« GitHub, Bitbucket, etc.

Project 3

* Implement a file-copy utility
— This is done entirely in user space!

* Three parts
— Multithreaded + synchronous 1/O
— Single threaded + asynchronous 1/O
— Performance analysis of these two implementations

/0 in Windows

« Advantages of sync 1/0O?

/0 in Windows

« Advantages of sync 1/0O?

— Easier to program
« Don’t have to explicitly synchronize with 1/O driver

« Advantages of async I/0?

/0 in Windows

« Advantages of sync 1/0O?

— Easier to program
« Don’t have to explicitly synchronize with 1/O driver

« Advantages of async I/0?

— Potentially more efficient
* You can overlap work with the 1/O request

 How can we make sync I/O go faster?

/0 in Windows

« Advantages of sync 1/0O?

— Easier to program
« Don’t have to explicitly synchronize with 1/O driver

« Advantages of async I/0?

— Potentially more efficient
* You can overlap work with the 1/O request

 How can we make sync I/O go faster?
— Use more threads!

/0 in Windows

* Synchronous

I/O Driver
Kernel Code
User Code // - writes to &buf
/ NtReadFile() { - notifies when done
ReadFile(&buf); 7] submit request <=
- Wait for signal &%
e S
* Asynchronous kerel Code |
NtReadFile() { \ :
User Code / Submit request I/O Driver
ev = CreateEvent() } - writes to &buf
ReadFile(&buf, ev); / - notifies “ev” when
done
... // do whatever Kernel Code /
= o - _————————_____% i i j
WaitForSingleObject(ev)] ”ﬂ:ﬁ'gf,’f;ga'f oﬁmm“ :
- 1} s

Project 3

Multithreaded + Sync I/O

Source Files

P

WriteFile(

Thread 1

ReadFile()
)

Destination

; Files

/ WriteFile()

Thread 2

Project 3

Single Threaded + Async I/O

Source Files Destination

Files

ReadFile() ReadFile()

WriteFile()

B o
\

Thread 1 WaitForMultipleObjects([ev1, ev2])

WriteFile()

Project 3

* Three parts
— Implement MtFileCopy (multithreaded)
— Implement MtFileCopyAsync (single threaded)
— Performance analysis

Project 3

file, files files <:>
fil 2
source files files —— Thread,
__\
h‘_‘_——————,
 — Thread>
files
7 Threads
@ L

MtFileCopy(ThreadCount=3, BufferSize=4096, files ..)
1. Break files into chunks of work (use chunkSize == ?)
2. Schedule chunks to threads (each thread copies one chunk at a time)

Project 3

file| file4 files
source files files T ‘ Thread,
-/‘ Thread,
files |
b 9 ‘ Threads
,F—-"/ °

« What goes into efficient schedule?

Project 3

file| file4 files
source files files Tt ‘ Thread,
-/‘ Thread,
files |
y ‘, ‘ Threads
,F——"/ °

« What goes into efficient schedule?
— Load balancing (keep threads busy)
— Locality

» Assign threads to different files?
Have threads team up on the same file?

Project 3

file, files files
source files files ~—-H_~_____\ ‘ Thread,
Threadz
files
1T ‘ Threads
,F——"/

« Scheduling approaches

— Build a schedule up-front (doesn’t respond well to performance
glitches?)
— Put chunks in a FIFO queue

Project 3

Async version

file| files files
— async
source files files | Q —
ﬁ|63 \
[
Thread,

MtFileCopyAsync(BufferCount=3, BufferSize=4096, files ..

« Same idea. Except
— You have just one thread
— That thread does 3 asynchronous chunk copies at once

Project 3

What experiments could | run?

« Use diverse input sets
Big files many files using network drives
Small files few files using local hard drives
using USB drives

« Time your program on each input set
— Use different values for /T and /B
— Use sync and async

« Analyze
— What is the best configuration
— What is the worst configuration
— Make graphs

Topics for Today
» Project 3

 Processes and Threads

Processes

Recap from lecture
 What is a process?

Processes

Recap from lecture

 What Is a process?
— An execution entity
— A running instance of a program

— Has at least
« An address space
* The code for the running program
* The data for the running program
At least one thread
« A set of OS resources

Processes

 How does an OS on single processor
hardware run multiple processes?

Processes

 How does an OS on single processor
hardware run multiple processes?

Processes in ready queue

Processor

0 0 B

Processes

 What does the OS do when there are no
processes to run?

Processes

 What does the OS do when there are no
processes to run?
— Run an idle process

 Periodically checks for any new tasks to run
* Loops the HLT instruction to save CPU time

Threads

]
States of a thread

dispatch

exception

interrupt

Threads

* Why use threads?

Threads

* Why use threads?

— Perform multiple tasks at once (reading and
writing, computing and receiving input)

— Take advantage of multiple CPUs

— More efficiently use resources

Threads v Processes

Overview

* Process
— Isolated with its own virtual address space
— Contains process data like file handles
— Lots of overhead
— Every process has at least one kernel thread

« Kernel Threads

— Shared virtual address space

— Contains running state data

— Less overhead

— From the OS'’s point of view, this is what is scheduled to run on a CPU
« User Threads

— Shared virtual address space, contains running state data

— Kernel unaware

— Even less overhead

Threads v Processes

Trade-offs

* Process
— Secure and isolated
— Kernel aware
— Creating a new process brings lots of overhead (address space)

« Kernel Threads
— No need to create a new address space
— No need to change address space in context switch
— Kernel aware
— Still need to enter kernel to context switch
« User Threads
— No new address space, no need to change address space

— No need to enter kernel to switch
— Kernel is unaware. No multiprocessing. Synch 1/O block all user threads

Threads v Processes

Implicit overheads

« Context switching between processes Is very

expensive because it changes the address space

— But changing the address space is simply a register change in the
CPU?

— Requires flush the Translation Look-aside Buffer
« Context switching between threads has a similar
overhead. Suddenly the cache will miss a lot.

Threads v Processes

Suppose that a programmer mistakenly creates a
local variable v in one thread t1 and passes a
pointer to v to another thread t2. Is it possible for
a write by t1 to some variable other than v to
change the state of v as observed by t27?

