
Section 2

CSE 451 Winter 2013

Anton Osobov

aosobov@cs

Some material adapted from CSE 451, Winter 2011 and

Operating Systems Principles and Practices by Anderson and Dahlin

Reminders

• Quiz tomorrow (1/18)

• Project 2 is up

– Due Wednesday, 1/30

– Individual project

• Projects 3 and 4 will be done in groups

– Groups were due to us yesterday, will be finalized by next week

Topics for Today

• Project 1

• System call parameter validation

• File handles

Project 1

• Questions/Comments?

• grepWin

Project 1

• Handling multiple returns from a function

– Example: NtReadFile

– Use a wrapper function

System Calls

• Provide user space applications with controlled

access to OS services

• Necessary to protect the system from buggy or

malicious code

• Requires special hardware support on CPU to

detect a system call instruction and trap to the

kernel

System Call Control Flow

• User application calls a user-level library routine
(NtQuerySystemInformation(), ReadFile(), etc.)

• This routine is a stub

– It calls the trap instruction and passes the number of
the desired sys call

– control is passed to the kernel

• The system call handler calls the appropriate
function in the kernel

• The function executes and returns to interrupt
handler, which return the result to the user
space process

8

A Kernel Crossing Illustrated

user mode

kernel mode

App: ReadFile(Handle, Buffer, Count, &BytesRead, Overlapped)

trap to kernel

mode; save app

state

find read()

handler in

vector table

restore app

state, return to

user mode,

resume

trap handler

NtReadFile() kernel routine

Kernel Sys Call Function Tasks

1. Locate system call arguments

– Arguments to a sys call stored in user memory

– Thus it is a virtual address

– Must be checked to make sure it is within the

users domain

– Must be converted to a physical address

Kernel Sys Call Function Tasks

2. Validate Parameters

– Kernel must protect itself from errors in the arguments

– Example:

• Normally a file name is a zero-terminated string

• The name could be corrupted

• It could point to memory outside the application’s region

• Could start inside the application’s memory but extend beyond it

– If an error is detected, kernel returns to the user with an

error

• What happens if you change the parameters after

the check?

Kernel Sys Call Function Tasks

3. Copy before check

– Kernel copies sys call parameters into kernel memory

before validating them

– Used to prevent Time of use to time of check attacks

Kernel Sys Call Function Tasks

4. Copy back results

– If sys call reads data into a buffer in user memory, that

data needs to be copied from the kernel buffer

– Kernel first checks the user address and converts it into

a kernel address, then copies

Putting it all together

int KernelStub_Open() {

char *localCopy[MaxFileNameSize + 1];

// check that stack pointer is valid and that the arguments are stored at valid addresses

if(!validUserAddressRange(userStackPointer, userStackPointer + size of arguments on stack))

 return error_code;

// fetch pointer to file name from user stack, and convert to a kernel pointer

filename = VirtualToKernel(userStackPointer);

// make a local copy of the filename, inside the OS. This prevents the application from

// changing the name after the check, but before the read

if(!VirtualToKernelStringCopy(filename, localCopy, MaxFileNameSize))

 return error_code;

// make sure local copy is null terminated

localCopy[MaxFileNameSize] = 0;

// check that the user is permitted to access this file

if(!UserFileAccessPermitted(localCopy, current_process)

 return error_code;

// now we can call the actual routine to open the file

return Kernel_Open(localCopy);

}

Sys Calls and File Handles

• To start accessing a file, a process calls open() to

get a file handle (file descriptor in linux)

• The OS requires that files be accessed through file

handles and not by just passing the file path to

read() and write()

• Why?

Sys Calls and File Handles

1. Path parsing and permission checking are only

required when file is opened

– No need to repeat on each read or write

Sys Calls and File Handles

1. Path parsing and permission checking are only

required when file is opened

– No need to repeat on each read or write

2. When a file is opened, OS creates a data

structure that:

– Keeps track of file’s ID

– Whether a process has read or write permissions

– A pointer to the processes current position within the

file

