CSE 451 Winter 2013

Section 2

Anton Osobov
aosobov@cs

Some material adapted from CSE 451, Winter 2011 and
Operating Systems Principles and Practices by Anderson and Dahlin

Reminders

* Quiz tomorrow (1/18)

* Project 2is up
— Due Wednesday, 1/30
— Individual project

* Projects 3 and 4 will be done in groups
— Groups were due to us yesterday, will be finalized by next week

Topics for Today

* Project 1
« System call parameter validation
* File handles

Project 1

e Questions/Comments?
« grepWin

Project 1

« Handling multiple returns from a function
— Example: NtReadFile

— Use a wrapper function

System Calls

* Provide user space applications with controlled
access to OS services

« Necessary to protect the system from buggy or
malicious code

* Requires special hardware support on CPU to
detect a system call instruction and trap to the
kernel

System Call Control Flow

» User application calls a user-level library routine
(NtQuerySystemInformation(), ReadFile (), etc.)

 This routine is a stub

— It calls the trap instruction and passes the number of
the desired sys call

— control Is passed to the kernel

* The system call handler calls the appropriate
function in the kernel

* The function executes and returns to interrupt
handler, which return the result to the user
space process

A Kernel Crossing lllustrated

App: ReadFile(Handle, Buffer, Count, &BytesRead, Overlapped)

trap to kernel
mode; save app

user mode state
kernel mode
' restore app
trap handler state, return to
user mode,
find read() resume
handler in
vector table

NtReadFile() kernel routine

How do we pass data to/from a
system call?

Process

threads

5 memory
User
Space - ReadFile(...);
Kernel “ReadFile(...) {
SPace #include “a.h”

return &kernbuf: int main() {
} kernbuf —

kernel memory

How do we pass data to/from a
system call?

Process

threads

5

BUG: user can’t access
kernel memory!

memory

User . buf = ReadFile(...);

Space L print(buf);

Kernel “ReadFile(...) {

Spac e #Hinclude “a.h”
return &kernbuf; il

}

kernbuf

kernel memory

How do we pass data to/from a
system call?

Process

threads

f

¥

* memory

OK: kernel can access
user memory

User ’ ReadFile(&buf, ..
Space . print(buf);
3
Kernel ReadFile(char® userbuf, ...) {
Space

memcpy(userbuf, kernbuf, sz); int main() {

return;

}

#Hinclude “a.h”™

kernbuf

kernel memory

How do we pass data to/from a
system call?

Evil user program:

| ReadFile((char*)0xf£f£23456, ...);
// manufacture a buffer ptr
// hope we get lucky and it points at

LJSEF ; // a kernel data structure!
Space :
Kernel = | \
S ReadFile(char™ userbuf, 1 user =“Tom"
pace int userlen) { A s
Oxfff23456
memcpy(userbuf, kernbuf, sz);
return;
} j#»inclual:le “a.h"
Kernel must validate in¢ main() {
kernbuf | --
user buffers!

” kernel memory

How do we pass data to/from a

system call?

Evil user program:

ReadFile((char*)0xff£f23456,
// manufacture a buffer ptr

<)

// hope we get lucky and it points at

User // a kernel data structure!

Space .

Kernel = | \

S ReadFile(char* userbuf, user = “Tom"

pace int userlen) { A s
0xfff23456

ProbeForWrite(userbuf, userien, ..);
// falls if userbuf is not valid
// memory in user space

memcpy(userbuf, kernbuf, sz);

21

#Hinclude “a.h”
int main() {

kernbuf

kernel memory

Kernel Sys Call Function Tasks

1. Locate system call arguments
— Arguments to a sys call stored in user memory
— Thus it is a virtual address

— Must be checked to make sure it Is within the
users domain

— Must be converted to a physical address

Kernel Sys Call Function Tasks

2. Validate Parameters
— Kernel must protect itself from errors in the arguments

— Example:
« Normally a file name is a zero-terminated string
 The name could be corrupted
* |t could point to memory outside the application’s region
» Could start inside the application’s memory but extend beyond it

— If an error is detected, kernel returns to the user with an
error
« What happens if you change the parameters after
the check?

Kernel Sys Call Function Tasks

3. Copy before check

— Kernel copies sys call parameters into kernel memory
before validating them

— Used to prevent Time of use to time of check attacks

Kernel Sys Call Function Tasks

4. Copy back results

— If sys call reads data into a buffer in user memory, that
data needs to be copied from the kernel buffer

— Kernel first checks the user address and converts it into
a kernel address, then copies

Putting it all together

int KernelStub Open() {
char *localCopy[MaxFileNameSize + 1];

// check that stack pointer is valid and that the arguments are stored at valid addresses

if('validUserAddressRange (userStackPointer, userStackPointer + size of arguments on stack))
return error code;

// fetch pointer to file name from user stack, and convert to a kernel pointer

filename = VirtualToKernel (userStackPointer);

// make a local copy of the filename, inside the 0OS. This prevents the application from
// changing the name after the check, but before the read

if('VirtualToKernelStringCopy(filename, localCopy, MaxFileNameSize))

return error code;

// make sure local copy 1s null terminated

localCopy[MaxFileNameSize] = 0O;

// check that the user is permitted to access this file
if (!'UserFileAccessPermitted(localCopy, current process)

return error code;

// now we can call the actual routine to open the file

return Kernel Open(localCopy);

Sys Calls and File Handles

« To start accessing a file, a process calls open() to
get a file handle (file descriptor in linux)

* The OS requires that files be accessed through file
handles and not by just passing the file path to
read() and write()

 Why?

Sys Calls and File Handles

1. Path parsing and permission checking are only
required when file is opened

— No need to repeat on each read or write

Sys Calls and File Handles

1. Path parsing and permission checking are only
required when file is opened
— No need to repeat on each read or write

2. When afile is opened, OS creates a data
structure that:
— Keeps track of file’s ID
— Whether a process has read or write permissions

— A pointer to the processes current position within the
file

