
CSE451 13Sp Section 2 Notes

James Youngquist <jay@cs>

April 14, 2013

1 Linux Kernel

The following assumes you have your source unpacked in the directory LDIR.

1.1 Con�guring / Compiling

The linux kernel as given does not need to be con�gured. But it's fun to look through all the options available
to you. To run the con�guration tool,

$ cd LDIR
$ make menuconfig

If you're using Qemu, you NEED to change a couple of options from modules to built-in. Modules requied
for boot are stored in an initial RAM based �lesystem (http://en.wikipedia.org/wiki/Initrd), which gives
�exibility but adds unneeded complexity for our purposes. Thus, to run your kernel in Qemu, you must
change the following options from modules to built-in:

Device Dr iver s
−> Network dev i ce support

−> Vi r t i o network d r i v e r
−> Ethernet d r i v e r support

−> In t e l PRO/1000∗

F i l e systems
−> Second extended f s support
−> Network F i l e Systems

−> NFS c l i e n t support
−> ALL subopt ions

−> Root f i l e system on NFS
−> NFS s e rv e r support

−> ALL subopt ions

Networking support
−> Networking opt ions

−> IP : ke rne l l e v e l au to con f i gu ra t i on
−> IP : DHCP support
−> IP : BOOTP support
−> IP : RARP support

which allows the kernel to boot without any external requirements.
After con�guring, don't forget to run

$ make c l ean
$ make −j<# cores> bzImage

1

http://initrd

1.2 Relevant �les

After you compile with make bzImage, several �les are generated.

LDIR/.con�g This �le is what make menuconfig changes. You can edit it directly if you like to change
options.

LDIR/vmlinux An ELF �executable� that is the kernel. You can't actually run this, but you can examine
it with objdump and readelf or load it into a GDB session.

LDIR/arch/x86/boot/bzImage The compressed kernel binary. This is the �le you use to overwrite
/boot/vmlinuz-3.8.3-201.cse451custom.fc18.x86_64

1.3 Introspection

The kernel provides several services that let you peak in on it's state.

1.3.1 printk

The simplest is using printk. Any messages sent using printk are displayed on the console and also stored
in a kernel bu�er so you can get to them later. The dmesg command will play back the kernel printk
bu�er. For example

$ dmesg
. . . . tons o f messages s c r o l l past your s c r e en

Send the output o f dmesg through the ' l e s s ' pager
$ dmesg | l e s s

Search f o r a s p e c i f i c s t r i n g
$ dmesg | grep some_string

Save the output o f dmesg to peruse at your l e i s u r e
$ dmesg > output_f i l e . txt

1.3.2 /proc

The /proc �lesystem is a virtual �le system that exports information primarily about processes. Each
process has a pid (process ID), and a corresponding directory /proc/pid that lets you examine state
information about the process. For example, I have a bash process running as process 8103,

Show where the binary and shared l i b r a r i e s have been loaded in to v i r t u a l memory
$ cat /proc /8103/maps

Look at a l l the f i l e s i t has open
$ l s − l / proc /8103/ fd

What l im i t s have been placed on t h i s p roce s s ?
$ cat /proc /8103/ l im i t s

It's not inconceivably that you could export the execcount information here so it can be accessed by any
language that can read a �le, instead of being limited to the syscall interface.

Proc on wikipedia � includes a nice list of what each �le means.

2

http://en.wikipedia.org/wiki/Procfs

1.3.3 /sys

The /sys �lesystem is a virtual �le system that exports information primarily about devices and drivers
from the kernel. It also lets you change parameters for the kernel at run time, either to tune performance,
or enable/disable features (like IP forwarding).

It's not as pertinent to the kind of things we're doing in this course, but you could imagine having a ��le�
that you can write a 0 or 1 to, to toggle execcount instrumentation on a kernel-wide basis.

Sysfs on wikipedia

1.3.4 /sys/kernel/debug

The debugfs is mounted as a subfolder of /sys and is meant a free-for-all �le system to use as you see �t
for debugging the kernel. https://github.com/chadversary/debugfs-tutorial is a nice tutorial of how to do
basic kernel-userspace communication via debugfs. And http://www.linuxforu.com/2010/10/debugging-
linux-kernel-with-debugfs/ is a bit longer of an explanation with links to further reading.

3

http://en.wikipedia.org/wiki/Sysfs
http://Here
http://this
http://this

	Linux Kernel
	Configuring / Compiling
	Relevant files
	Introspection
	printk
	/proc
	/sys
	/sys/kernel/debug

