
CSE 451: Operating Systems

Section 9

Debugging kernel modules, project 3

Preliminary project 2b feedback

Many groups disabled interrupts unnecessarily or
too early/for too long

 Do sthread_user_mutex_free and
sthread_user_cond_free need to disable
interrupts/acquire a lock?
 No: They are only invoked after all function calls using

them have finished

 Be consistent in whether you disable interrupts or
whether you acquire a lock to protect a certain data
structure: mixing the two is dangerous and can lead
to deadlocks

5/29/13 2

Debugging kernel modules

Debugging kernel modules with GDB is
tricky—GDB needs to know both what the
symbols are (from the .ko file) and where in
the kernel they are located

We have the kernel object (.ko) file, but how
can we figure out where in the running
kernel the symbols are located?

Answer: the kernel tells us!

5/29/13 3

Debugging kernel modules

After loading a kernel module in Qemu, look
under /sys/modules/[module-
name]/sections/ to see a file for each of its
sections:

> cd /sys/module/ext2undelete/sections/

> ls -A

.bss .init.text .smp_locks .text

.exit.text .note.gnu.build-id .strtab

__mcount_loc .gnu.linkonce.this_module

.rodata .symtab

5/29/13 4

Debugging kernel modules

The contents of each file is the address
within the kernel of the corresponding
section:

> cat .text .rodata .bss

0xffffffffa0000000

0xffffffffa0001030

0xffffffffa0002260

5/29/13 5

Debugging kernel modules

 Next, connect GDB to your running Qemu instance using the directions
on the VM Info course page, then load the module file’s symbols:

(gdb) add-symbol-file 451repo/project3/ext2undelete.ko \

 0xffffffffa0000000 -s .rodata 0xffffffffa0001030 \

 -s .bss 0xffffffffa0002260

add symbol table from file

"451repo/project3/ext2undelete.ko" at

.text_addr = 0xffffffffa0000000

.rodata_addr = 0xffffffffa0001030

.bss_addr = 0xffffffffa0002260

(y or n) y

Reading symbols from

451repo/project3/ext2undelete.ko...done.

5/29/13 6

http://www.cs.washington.edu/education/courses/cse451/13sp/vminfo.html

Debugging kernel modules

Now we’re set! Can examine symbols, set
breakpoints, etc. from the comfort of GDB

(Show demo here)

This material is also available as a tutorial on
the course website

5/29/13 7

http://www.cs.washington.edu/education/courses/cse451/13sp/vminfo.html
http://www.cs.washington.edu/education/courses/cse451/13sp/vminfo.html

Project 3 tips

 How can we figure out which inodes have been
deleted?

 First step: Check the inode bitmap
 The bits of the inode bitmap describe which inodes are

currently in use
 If the address of the inode bitmap is ib_ptr, how can

we test if the nth inode is not in use?

 Second step: Check whether the inode was actually
deleted
 What tells us that an inode was deleted as opposed to

simply never having been used?

5/29/13 8

Project 3 tips

As an aside, arch/arm/include/asm/bitops.h
defines a number of efficient bitwise
operators

When ext2_new_inode in fs/ext2/ialloc.c
looks for the next available inode number, it
(indirectly) invokes the
find_first_zero_bit_le function, which
finds the index of the first zero bit for a little
endian integer of a given size

5/29/13 9

Project 3 tips

There are many scenarios to test to make
sure your undelete module is
working…check as many as you can!

Calls to undelete_read with a small buffer size
(for example, a single byte)

 Should advance buffer_read_offset without
reading the next block

 File systems spanning multiple block groups

 File systems with a variety of block sizes

5/29/13 10

Course evaluations

Everyone’s favorite activity!

5/29/13 11

