
CSE 451: Operating Systems 

Section 5 

Midterm review 



Kernel/userspace separation 

 Userspace processes cannot interact directly with 
hardware (non-privileged mode) 

 Attempting to execute a system call instruction 
causes a trap to the kernel (privileged mode), which 
handles the request 

Why is it necessary to have both privileged and non-
privileged mode? 

 How is privileged mode enforced, and how do virtual 
machine monitors work inside this model?  
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IO from userspace 

Userspace processes interact with disks and 
other devices via open(), read(), write(), 
and other system calls 

Multiple levels of abstraction: kernel 
surfaces filesystem to userspace, and device 
drivers surface (mostly) unified interface to 
reading and writing data to kernel 
What are the benefits and drawbacks of 

designing a system in this way? 
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Monolithic and microkernels 

Monolithic kernels encapsulate all aspects of 
functionality aside from hardware and user programs 
 Pro: Low communication cost, since everything is in the 

same address space 

 Cons: No isolation between modules, not easy to tack on 
new features 

Microkernels separate functionality into separate 
modules that each expose an API 
 Pros and cons are opposite those of monolithic kernels 

 Amazon’s internal reorganization of services a few years 
ago had very much a microkernel vibe 
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Processes versus threads 

Processes have multiple pieces of state 
associated with them 

 Program counter, registers, virtual memory, open 
file handles, mutexes, registered signal handlers, the 
text and data segment of the program, and so on 

Threads are “lightweight” versions of processes 

 Which pieces of state listed above do threads not 
maintain individually? 
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Process creation 

 fork(): create and initialize a new process control block 
 Copy resources of current process but assign a new address 

space 
 Calls to fork() return twice—once to parent (with pid of 

child process) and once to child 
 What makes this system call fast even for large processes? 

vfork() versus copy-on-write 

 exec(): stop the current process and begin execution of 
a new one 
 Existing process image is overwritten 
 No new process is created 
 Is there a reason why fork() and exec() are separate 

system calls? 
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Threads 

 How is a kernel thread different from a userspace 
thread? 
 Kernel thread: managed by OS, can run on a different 

CPU core than parent process 
 Userspace thread: managed by process/thread library, 

provides concurrency but no parallelism (can’t have two 
userspace threads within a process executing 
instructions at the same time) 

 CPU sharing 
 Threads share CPU either implicitly (via preemption) or 

explicitly via calls to yield() 
 What happens when a userspace thread blocks on IO? 
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Synchronization 

 Critical sections are sequences of instructions that 
may produce incorrect behavior if two threads 
interleave or execute them at the same time 
 E.g. the banking example that everyone loves to use 

Mutexes are constructs that enforce mutual exclusion 
 mutex.lock()/acquire(): wait until no other thread 

holds the lock and then acquire it 

 mutex.unlock()/release(): release the Kraken! Er, lock 

 Mutexes rely on hardware support such as an atomic test-
and-set instruction or being able to disable interrupts 
(why?) 
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Synchronization constructs 

Spinlocks are mutexes where lock() spins in a 
loop until the lock can be acquired 
 High CPU overhead, but no expensive context 

switches are necessary 
 In what type of scenario are spinlocks useful? 

Semaphores are counters that support atomic 
increments and decrements 
 P(sem): block until semaphore count is positive, 

then decrement and continue 
 V(sem): increment semaphore count 
 How are semaphores different from spinlocks? 
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Synchronization constructs 

 Condition variables associated with mutexes allow 
threads to wait for events and to signal when they 
have occurred 
 cv.wait(mutex* m): release mutex m and block until the 

condition variable cv is signaled. m will be held when 
wait() returns 

 cv.signal(): unblock one of the waiting threads. m must 
be held during the call but released sometime afterward 

 Why is it necessary to associate a mutex with a condition 
variable? 

 What happens if signal() is invoked before a call to 
wait()? 
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Monitors 

 Monitors are souped-up condition variables that support 
enter(), exit(), wait(), and signal() routines 

 When one thread enters a monitor, no other thread can 
enter until the first thread exits 

 The exception is that a thread can wait on a condition 
after entering a monitor, permitting another thread to 
enter (which will potentially signal and unblock the first 
thread) 
 Hoare monitors: signal() causes a waiting thread to run 

immediately 
 Mesa monitors: signal() returns to the caller and a waiting 

thread will unblock some time later 
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Deadlock 

 What is an example of deadlock? 

 Methods for preventing and avoiding deadlock 
 Have threads block until all required locks are available 
 Have all threads acquire locks in the same global ordering 
 Run banker’s algorithm to simulate what would happen if this 

thread and others made maximum requests: no deadlock = 
continue, deadlock = block and check again later 

 Can resolve deadlock by breaking cycles in the 
dependency graph: choose a thread, kill it, and release 
its locks 
 What are the potential problems related to doing this? 
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Scheduling 

Operating systems share CPU time between 
processes by context-switching between them 
 In systems that support preemption, each process runs 

for a certain quantum (time slice) before the OS switches 
contexts to another process 

 Which process runs next depends on the scheduling 
policy 

 Scheduling policies can attempt to maximize CPU 
utilization or throughput or minimize response time, 
for example 
 There are always tradeoffs between performance and 

fairness 
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Scheduling laws 

Utilization law: utilization is constant regardless 
of scheduling policy as long as the workload 
can be processed 

Little’s law: the better the average response 
time, the fewer processes there will be in the 
scheduling system 

Kleinrock’s conservation law: improving the 
response time of one class of task by increasing 
its priority hurts the response time of at least 
one other class of task 
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Scheduling policies 

 FIFO: first in first out 
 Schedule processes in the order they arrive 

 SPT: shortest processing time first 
 Schedule process with smallest time requirement 

 RR: round robin 
 Cycle through processes, executing each for a fixed amount of time 

 Priority 
 Assign a priority to each process and execute higher-priority 

processes first 

 What are the benefits and drawbacks of each type of scheduling 
policy? 
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Virtual memory 

Each process has the illusion of use of the 
complete address space 

Facilitates isolation and also sharing (how?) 

The OS manages a mapping of virtual 
address to physical addresses 

Address translation 
High bits of virtual address map to physical page 

 Low bits of address determine offset within page 
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Page tables 

Per-process constructs that map virtual 
pages to physical pages 
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Page table entries 

Page table entries contain bits that describe 
whether a page is valid, whether it has been 
referenced, whether it is dirty, its protection 
flags (read, write, execute), and the physical 
page number 
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Segmentation 

 What are the advantages and disadvantages of using virtual 
memory? 
 Pros: isolation, reduced (virtual) memory fragmentation 

 Cons: additional overhead in address lookups, page tables 
themselves require memory 

 Segmentation: break up regions of virtual memory by usage 
 E.g. stack, heap, and text (instructions) 

 Virtual addresses have the form <segment number, offset> under 
this scheme 

 Can combine paging and segmentation: keep page table per 
segment as opposed to per process 
 Addresses take the form <segment number, virtual page number, 

offset> 
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Paged virtual memory 

Memory is limited, so operating systems will 
often evict pages to disk to make room for 
others 

Can mark page table entry to indicate that page 
is actually on disk 

 If a page that is on disk is referenced, a page 
fault occurs and the operating system reads the 
page back into memory 
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Page replacement algorithms 

Page replacement algorithms describe which 
page should be evicted to disk in order to bring 
another into memory 

Belady’s algorithm: evict the page that won’t be 
used for the longest time in the future 
 Useful for comparison, but impossible to implement 

FIFO: evict page brought in the longest time ago 

LRU: evict the least recently used page 
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Page replacement algorithms 

LRU clock: sweep through pages like the hand 
of a clock 
 Whenever a page is accessed, set its reference bit 
 When looking for a page to evict, clear the bit for 

any page passed 
 Return the first page seen with an unset bit 

Working set: keep a certain working set of 
pages in memory for each process 

Page fault frequency: attempt to equalize page 
fault rate between processes 
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