
CSE 451: Operating Systems

Section 5

Midterm review

Kernel/userspace separation

 Userspace processes cannot interact directly with
hardware (non-privileged mode)

 Attempting to execute a system call instruction
causes a trap to the kernel (privileged mode), which
handles the request

Why is it necessary to have both privileged and non-
privileged mode?

 How is privileged mode enforced, and how do virtual
machine monitors work inside this model?

5/2/13 2

IO from userspace

Userspace processes interact with disks and
other devices via open(), read(), write(),
and other system calls

Multiple levels of abstraction: kernel
surfaces filesystem to userspace, and device
drivers surface (mostly) unified interface to
reading and writing data to kernel
What are the benefits and drawbacks of

designing a system in this way?

5/2/13 3

Monolithic and microkernels

Monolithic kernels encapsulate all aspects of
functionality aside from hardware and user programs
 Pro: Low communication cost, since everything is in the

same address space

 Cons: No isolation between modules, not easy to tack on
new features

Microkernels separate functionality into separate
modules that each expose an API
 Pros and cons are opposite those of monolithic kernels

 Amazon’s internal reorganization of services a few years
ago had very much a microkernel vibe

5/2/13 4

Processes versus threads

Processes have multiple pieces of state
associated with them

 Program counter, registers, virtual memory, open
file handles, mutexes, registered signal handlers, the
text and data segment of the program, and so on

Threads are “lightweight” versions of processes

 Which pieces of state listed above do threads not
maintain individually?

5/2/13 5

Process creation

 fork(): create and initialize a new process control block
 Copy resources of current process but assign a new address

space
 Calls to fork() return twice—once to parent (with pid of

child process) and once to child
 What makes this system call fast even for large processes?

vfork() versus copy-on-write

 exec(): stop the current process and begin execution of
a new one
 Existing process image is overwritten
 No new process is created
 Is there a reason why fork() and exec() are separate

system calls?

5/2/13 6

Threads

 How is a kernel thread different from a userspace
thread?
 Kernel thread: managed by OS, can run on a different

CPU core than parent process
 Userspace thread: managed by process/thread library,

provides concurrency but no parallelism (can’t have two
userspace threads within a process executing
instructions at the same time)

 CPU sharing
 Threads share CPU either implicitly (via preemption) or

explicitly via calls to yield()
 What happens when a userspace thread blocks on IO?

5/2/13 7

Synchronization

 Critical sections are sequences of instructions that
may produce incorrect behavior if two threads
interleave or execute them at the same time
 E.g. the banking example that everyone loves to use

Mutexes are constructs that enforce mutual exclusion
 mutex.lock()/acquire(): wait until no other thread

holds the lock and then acquire it

 mutex.unlock()/release(): release the Kraken! Er, lock

 Mutexes rely on hardware support such as an atomic test-
and-set instruction or being able to disable interrupts
(why?)

5/2/13 8

Synchronization constructs

Spinlocks are mutexes where lock() spins in a
loop until the lock can be acquired
 High CPU overhead, but no expensive context

switches are necessary
 In what type of scenario are spinlocks useful?

Semaphores are counters that support atomic
increments and decrements
 P(sem): block until semaphore count is positive,

then decrement and continue
 V(sem): increment semaphore count
 How are semaphores different from spinlocks?

5/2/13 9

Synchronization constructs

 Condition variables associated with mutexes allow
threads to wait for events and to signal when they
have occurred
 cv.wait(mutex* m): release mutex m and block until the

condition variable cv is signaled. m will be held when
wait() returns

 cv.signal(): unblock one of the waiting threads. m must
be held during the call but released sometime afterward

 Why is it necessary to associate a mutex with a condition
variable?

 What happens if signal() is invoked before a call to
wait()?

5/2/13 10

Monitors

 Monitors are souped-up condition variables that support
enter(), exit(), wait(), and signal() routines

 When one thread enters a monitor, no other thread can
enter until the first thread exits

 The exception is that a thread can wait on a condition
after entering a monitor, permitting another thread to
enter (which will potentially signal and unblock the first
thread)
 Hoare monitors: signal() causes a waiting thread to run

immediately
 Mesa monitors: signal() returns to the caller and a waiting

thread will unblock some time later

5/2/13 11

Deadlock

 What is an example of deadlock?

 Methods for preventing and avoiding deadlock
 Have threads block until all required locks are available
 Have all threads acquire locks in the same global ordering
 Run banker’s algorithm to simulate what would happen if this

thread and others made maximum requests: no deadlock =
continue, deadlock = block and check again later

 Can resolve deadlock by breaking cycles in the
dependency graph: choose a thread, kill it, and release
its locks
 What are the potential problems related to doing this?

5/2/13 12

Scheduling

Operating systems share CPU time between
processes by context-switching between them
 In systems that support preemption, each process runs

for a certain quantum (time slice) before the OS switches
contexts to another process

 Which process runs next depends on the scheduling
policy

 Scheduling policies can attempt to maximize CPU
utilization or throughput or minimize response time,
for example
 There are always tradeoffs between performance and

fairness

5/2/13 13

Scheduling laws

Utilization law: utilization is constant regardless
of scheduling policy as long as the workload
can be processed

Little’s law: the better the average response
time, the fewer processes there will be in the
scheduling system

Kleinrock’s conservation law: improving the
response time of one class of task by increasing
its priority hurts the response time of at least
one other class of task

5/2/13 14

Scheduling policies

 FIFO: first in first out
 Schedule processes in the order they arrive

 SPT: shortest processing time first
 Schedule process with smallest time requirement

 RR: round robin
 Cycle through processes, executing each for a fixed amount of time

 Priority
 Assign a priority to each process and execute higher-priority

processes first

 What are the benefits and drawbacks of each type of scheduling
policy?

5/2/13 15

Virtual memory

Each process has the illusion of use of the
complete address space

Facilitates isolation and also sharing (how?)

The OS manages a mapping of virtual
address to physical addresses

Address translation
High bits of virtual address map to physical page

 Low bits of address determine offset within page

5/2/13 16

Page tables

Per-process constructs that map virtual
pages to physical pages

5/2/13 Diagram from Ed Lazowska 17

Page table entries

Page table entries contain bits that describe
whether a page is valid, whether it has been
referenced, whether it is dirty, its protection
flags (read, write, execute), and the physical
page number

5/2/13

Diagram from Ed Lazowska

18

Segmentation

 What are the advantages and disadvantages of using virtual
memory?
 Pros: isolation, reduced (virtual) memory fragmentation

 Cons: additional overhead in address lookups, page tables
themselves require memory

 Segmentation: break up regions of virtual memory by usage
 E.g. stack, heap, and text (instructions)

 Virtual addresses have the form <segment number, offset> under
this scheme

 Can combine paging and segmentation: keep page table per
segment as opposed to per process
 Addresses take the form <segment number, virtual page number,

offset>

5/2/13 19

Paged virtual memory

Memory is limited, so operating systems will
often evict pages to disk to make room for
others

Can mark page table entry to indicate that page
is actually on disk

 If a page that is on disk is referenced, a page
fault occurs and the operating system reads the
page back into memory

5/2/13 20

Page replacement algorithms

Page replacement algorithms describe which
page should be evicted to disk in order to bring
another into memory

Belady’s algorithm: evict the page that won’t be
used for the longest time in the future
 Useful for comparison, but impossible to implement

FIFO: evict page brought in the longest time ago

LRU: evict the least recently used page

5/2/13 21

Page replacement algorithms

LRU clock: sweep through pages like the hand
of a clock
 Whenever a page is accessed, set its reference bit
 When looking for a page to evict, clear the bit for

any page passed
 Return the first page seen with an unset bit

Working set: keep a certain working set of
pages in memory for each process

Page fault frequency: attempt to equalize page
fault rate between processes

5/2/13 22

