
CSE 451: Operating Systems

Section 5

Midterm review

Kernel/userspace separation

 Userspace processes cannot interact directly with
hardware (non-privileged mode)

 Attempting to execute a system call instruction
causes a trap to the kernel (privileged mode), which
handles the request

Why is it necessary to have both privileged and non-
privileged mode?

 How is privileged mode enforced, and how do virtual
machine monitors work inside this model?

5/2/13 2

IO from userspace

Userspace processes interact with disks and
other devices via open(), read(), write(),
and other system calls

Multiple levels of abstraction: kernel
surfaces filesystem to userspace, and device
drivers surface (mostly) unified interface to
reading and writing data to kernel
What are the benefits and drawbacks of

designing a system in this way?

5/2/13 3

Monolithic and microkernels

Monolithic kernels encapsulate all aspects of
functionality aside from hardware and user programs
 Pro: Low communication cost, since everything is in the

same address space

 Cons: No isolation between modules, not easy to tack on
new features

Microkernels separate functionality into separate
modules that each expose an API
 Pros and cons are opposite those of monolithic kernels

 Amazon’s internal reorganization of services a few years
ago had very much a microkernel vibe

5/2/13 4

Processes versus threads

Processes have multiple pieces of state
associated with them

 Program counter, registers, virtual memory, open
file handles, mutexes, registered signal handlers, the
text and data segment of the program, and so on

Threads are “lightweight” versions of processes

 Which pieces of state listed above do threads not
maintain individually?

5/2/13 5

Process creation

 fork(): create and initialize a new process control block
 Copy resources of current process but assign a new address

space
 Calls to fork() return twice—once to parent (with pid of

child process) and once to child
 What makes this system call fast even for large processes?

vfork() versus copy-on-write

 exec(): stop the current process and begin execution of
a new one
 Existing process image is overwritten
 No new process is created
 Is there a reason why fork() and exec() are separate

system calls?

5/2/13 6

Threads

 How is a kernel thread different from a userspace
thread?
 Kernel thread: managed by OS, can run on a different

CPU core than parent process
 Userspace thread: managed by process/thread library,

provides concurrency but no parallelism (can’t have two
userspace threads within a process executing
instructions at the same time)

 CPU sharing
 Threads share CPU either implicitly (via preemption) or

explicitly via calls to yield()
 What happens when a userspace thread blocks on IO?

5/2/13 7

Synchronization

 Critical sections are sequences of instructions that
may produce incorrect behavior if two threads
interleave or execute them at the same time
 E.g. the banking example that everyone loves to use

Mutexes are constructs that enforce mutual exclusion
 mutex.lock()/acquire(): wait until no other thread

holds the lock and then acquire it

 mutex.unlock()/release(): release the Kraken! Er, lock

 Mutexes rely on hardware support such as an atomic test-
and-set instruction or being able to disable interrupts
(why?)

5/2/13 8

Synchronization constructs

Spinlocks are mutexes where lock() spins in a
loop until the lock can be acquired
 High CPU overhead, but no expensive context

switches are necessary
 In what type of scenario are spinlocks useful?

Semaphores are counters that support atomic
increments and decrements
 P(sem): block until semaphore count is positive,

then decrement and continue
 V(sem): increment semaphore count
 How are semaphores different from spinlocks?

5/2/13 9

Synchronization constructs

 Condition variables associated with mutexes allow
threads to wait for events and to signal when they
have occurred
 cv.wait(mutex* m): release mutex m and block until the

condition variable cv is signaled. m will be held when
wait() returns

 cv.signal(): unblock one of the waiting threads. m must
be held during the call but released sometime afterward

 Why is it necessary to associate a mutex with a condition
variable?

 What happens if signal() is invoked before a call to
wait()?

5/2/13 10

Monitors

 Monitors are souped-up condition variables that support
enter(), exit(), wait(), and signal() routines

 When one thread enters a monitor, no other thread can
enter until the first thread exits

 The exception is that a thread can wait on a condition
after entering a monitor, permitting another thread to
enter (which will potentially signal and unblock the first
thread)
 Hoare monitors: signal() causes a waiting thread to run

immediately
 Mesa monitors: signal() returns to the caller and a waiting

thread will unblock some time later

5/2/13 11

Deadlock

 What is an example of deadlock?

 Methods for preventing and avoiding deadlock
 Have threads block until all required locks are available
 Have all threads acquire locks in the same global ordering
 Run banker’s algorithm to simulate what would happen if this

thread and others made maximum requests: no deadlock =
continue, deadlock = block and check again later

 Can resolve deadlock by breaking cycles in the
dependency graph: choose a thread, kill it, and release
its locks
 What are the potential problems related to doing this?

5/2/13 12

Scheduling

Operating systems share CPU time between
processes by context-switching between them
 In systems that support preemption, each process runs

for a certain quantum (time slice) before the OS switches
contexts to another process

 Which process runs next depends on the scheduling
policy

 Scheduling policies can attempt to maximize CPU
utilization or throughput or minimize response time,
for example
 There are always tradeoffs between performance and

fairness

5/2/13 13

Scheduling laws

Utilization law: utilization is constant regardless
of scheduling policy as long as the workload
can be processed

Little’s law: the better the average response
time, the fewer processes there will be in the
scheduling system

Kleinrock’s conservation law: improving the
response time of one class of task by increasing
its priority hurts the response time of at least
one other class of task

5/2/13 14

Scheduling policies

 FIFO: first in first out
 Schedule processes in the order they arrive

 SPT: shortest processing time first
 Schedule process with smallest time requirement

 RR: round robin
 Cycle through processes, executing each for a fixed amount of time

 Priority
 Assign a priority to each process and execute higher-priority

processes first

 What are the benefits and drawbacks of each type of scheduling
policy?

5/2/13 15

Virtual memory

Each process has the illusion of use of the
complete address space

Facilitates isolation and also sharing (how?)

The OS manages a mapping of virtual
address to physical addresses

Address translation
High bits of virtual address map to physical page

 Low bits of address determine offset within page

5/2/13 16

Page tables

Per-process constructs that map virtual
pages to physical pages

5/2/13 Diagram from Ed Lazowska 17

Page table entries

Page table entries contain bits that describe
whether a page is valid, whether it has been
referenced, whether it is dirty, its protection
flags (read, write, execute), and the physical
page number

5/2/13

Diagram from Ed Lazowska

18

Segmentation

 What are the advantages and disadvantages of using virtual
memory?
 Pros: isolation, reduced (virtual) memory fragmentation

 Cons: additional overhead in address lookups, page tables
themselves require memory

 Segmentation: break up regions of virtual memory by usage
 E.g. stack, heap, and text (instructions)

 Virtual addresses have the form <segment number, offset> under
this scheme

 Can combine paging and segmentation: keep page table per
segment as opposed to per process
 Addresses take the form <segment number, virtual page number,

offset>

5/2/13 19

Paged virtual memory

Memory is limited, so operating systems will
often evict pages to disk to make room for
others

Can mark page table entry to indicate that page
is actually on disk

 If a page that is on disk is referenced, a page
fault occurs and the operating system reads the
page back into memory

5/2/13 20

Page replacement algorithms

Page replacement algorithms describe which
page should be evicted to disk in order to bring
another into memory

Belady’s algorithm: evict the page that won’t be
used for the longest time in the future
 Useful for comparison, but impossible to implement

FIFO: evict page brought in the longest time ago

LRU: evict the least recently used page

5/2/13 21

Page replacement algorithms

LRU clock: sweep through pages like the hand
of a clock
 Whenever a page is accessed, set its reference bit
 When looking for a page to evict, clear the bit for

any page passed
 Return the first page seen with an unset bit

Working set: keep a certain working set of
pages in memory for each process

Page fault frequency: attempt to equalize page
fault rate between processes

5/2/13 22

