
CSE 451: Operating Systems

Section 2

Interrupts, system calls, and project 1

Interrupts

 Interrupt
 Hardware or software
 Hardware interrupts caused by devices signaling CPU
 Software interrupts caused by code

Exception
 Unintentional software interrupt
 E.g. errors, divide-by-zero, general protection fault

Trap
 Intentional software interrupt
 Controlled method of entering kernel mode
 System calls

4/11/13 2

Interrupt handling

 Execution of current process halts

 CPU switches from user mode to kernel mode, saving
process state (registers, stack pointer, program
counter)

 CPU looks up interrupt handler in table and executes
it

When the interrupt handler finishes, the CPU
restores the process state, switches back to user
mode, and resumes execution

4/11/13 3

Interrupt handling

What happens if there is another interrupt
during the handler?

The kernel disables interrupts before entering a
handler routine?

Preemption

What happens if an interrupt fires while
they are disabled?

The kernel queues interrupts for later processing

4/11/13 4

System calls

Provide userspace applications with
controlled access to OS services

Requires special hardware support on the
CPU to detect a certain system call
instruction and trap to the kernel

x86 uses the INT X instruction, X in [0,255]

4/11/13 5

System call control flow

 User application calls a user-level library routine
(gettimeofday(), read(), exec(), etc.)

 Invokes system call through stub, which specifies the
system call number. From unistd.h:

#define __NR_getpid 172

__SYSCALL(__NR_getpid, sys_getpid)

 This generally causes an interrupt, trapping to kernel

 Kernel looks up system call number in syscall table,
calls appropriate function

 Function executes and returns to interrupt handler,
which returns the result to the userspace process

4/11/13 6

System call control flow

Specifics have changed since this diagram was
created, but the idea is still the same

4/11/13 7

Linux Syscall Specifics

 The syscall handler is generally defined in
arch/x86/kernel/entry_[32|64].S

 In the Ubuntu kernel I am running,
entry_64.S contains ENTRY(system_call),
which is where the syscall logic starts

 There used to be “int” and “iret”
instructions, but those have been replaced by
“sysenter” and “sysexit”, which provide
similar functionality.

4/11/13 8

Project 1

Due: April 24 at 11:59 PM.

Three parts of varying difficulty:
 Write a simple shell in C

 Add a new system call and track state in kernel
structures to make it work

 Write a library through which the system call can be
invoked

Turn in code plus a write-up related to what
you learned/should have learned

4/11/13 9

The CSE451 shell

 Print out prompt

 Accept input

 Parse input

 If built-in command
 Do it directly

 Else spawn new process
 Launch specified program
 Wait for it to finish

 Repeat

4/11/13 10

CSE451Shell% /bin/date

Wed Apr 31 21:58:55 PDT 2013

CSE451Shell% pwd

/root

CSE451Shell% cd /

CSE451Shell% pwd

/

CSE451Shell% exit

CSE451 shell hints

 In your shell:
 Use fork to create a child process

 Use execvp to execute a specified program

 Use wait to wait until child process terminates

Useful library functions (see man pages):
 Strings: strcmp, strncpy, strtok, atoi

 I/O: fgets or (preferrably) readline

 Error reporting: perror

 Environment variables: getenv

4/11/13 11

CSE451 shell hints

Advice from a previous TA:
 Try running a few commands in your completed

shell and then type exit. If it doesn’t exit the first
time, you’re doing something wrong

 echo $? prints the last exit code, so you can check
your exit code against what is expected.

 Check the return values of all library/system calls.
They might not be working as you expect

 Each partner in your group should contribute some
work to each piece or you won’t end up
understanding the big picture

4/11/13 12

Adding a system call

Add execcounts system call to Linux:
 Purpose: collect statistics

 Count number of times a process and all of its
descendents call the fork, vfork, clone, and exec
system calls

Steps:
 Modify kernel to keep track of this information

 Add execcounts to return the counts to the user

 Use execcounts in your shell to get this data from
kernel and print it out

4/11/13 13

Programming in kernel mode

Your shell will operate in user mode

Your system call code will be in the Linux
kernel, which operates in kernel mode

Be careful - different programming rules,
conventions, etc.

4/11/13 14

Kernel programming

 Can’t use application libraries (e.g. libc)
 No printf—use prink instead

 Use only headers/functions exposed by the kernel

 Don’t forget you’re in kernel space

 You cannot trust user space

 For example, you should validate user buffers (look
in kernel source for what other syscalls, e.g.
gettimeofday do)

4/11/13 15

Kernel development hints

Use find + grep as a starting point to find
interesting code

find . -type f -name "*.h" -exec grep -n \

 gettimeofday {} +

Pete Hornyack (a previous TA) put together a
tutorial on using ctags and cscope to cross-
reference type definitions:
http://www.cs.washington.edu/education/cour
ses/cse451/13sp/tutorials/tutorial_ctags.html

4/11/13 16

http://www.cs.washington.edu/education/courses/cse451/13sp/tutorials/tutorial_ctags.html
http://www.cs.washington.edu/education/courses/cse451/13sp/tutorials/tutorial_ctags.html
http://www.cs.washington.edu/education/courses/cse451/13sp/tutorials/tutorial_ctags.html

Kernel development hints

 Use Git to collaborate with your project partners
 There is a guide to getting Git set up for use with project 1 on

the website:
 http://www.cs.washington.edu/education/courses/cse451/13sp/tut

orials/tutorial_git.html

 Overview of use:
 Create a shared repository in /projects/instr/13sp/cse451/X, where

X is your group’s letter

 Check the project’s kernel source into the repository
 Have each group member check out the kernel source, make

modifications to it as necessary, and check in their changes
 See the web page for more information

 Git makes it easy to find any files you’ve changed.

4/11/13 17

http://www.cs.washington.edu/education/courses/cse451/13sp/tutorials/tutorial_git.html
http://www.cs.washington.edu/education/courses/cse451/13sp/tutorials/tutorial_git.html
http://www.cs.washington.edu/education/courses/cse451/13sp/tutorials/tutorial_git.html

Project 1 development

Option 1: Use VMWare on a Windows lab machine
 Can use forkbomb for kernel compilation (fast)
 …or use the VM itself for kernel compilation (slow?)
 The VM files are not preserved once you log out of the

Windows machine, so copy/git push your work to attu,
your shared repository, or some other “safe” place

Option 2: Use your own machine
 Can use VMWare, VirtualBox, or your VMM of choice
 See the “VM information” page on the website for

getting this set up:
http://www.cs.washington.edu/education/courses/cse45
1/13sp/vminfo.html

4/11/13 18

http://www.cs.washington.edu/education/courses/cse451/13sp/vminfo.html
http://www.cs.washington.edu/education/courses/cse451/13sp/vminfo.html
http://www.cs.washington.edu/education/courses/cse451/13sp/vminfo.html
http://www.cs.washington.edu/education/courses/cse451/13sp/vminfo.html

Project 1 development

Once you have built the kernel, copy the resulting
bzImage file to your VM and overwrite
/boot/vmlinuz-3.8.3-201.cse451custom

 Reboot with sudo shutdown –r now

 If your kernel fails to boot, pick a different kernel
from the menu to get back into the VM

While inside the running VM, use the dmesg
command to print out the kernel log (your printks
will show up here—use grep to find the ones you
care about)

4/11/13 19

Project 1 development

Instructions will be coming out soon for
using Qemu to test the kernels

Much more convenient than Vmware

 It will run in a terminal window

You can debug the kernel from your host
machine using GDB

 It’s a bit trickier to set up … but good stuff to
know if you plan to get into backend dev

 Forkbomb is a Qemu virtual machine!

4/11/13 20

Time Left?

We could chat about

 Linux kernel basics – modules, compiling,
configuring

 Some nice features the Linux kernel provides

The weather

Workflow tricks (automation is your friend)

4/11/13 21

